Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(6): e0218041, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31173612

RESUMO

There is strong evidence that neuronal hyper-excitability underlies migraine, and may or may not be preceded by cortical spreading depression. However, the mechanisms for cortical spreading depression and/or migraine are not established. Previous studies reported that cerebrospinal fluid (CSF) [Na+] is higher during migraine, and that higher extracellular [Na+] leads to hyper-excitability. We raise the hypothesis that altered choroid plexus Na+, K+-ATPase activity can cause both migraine phenomena: inhibition raises CSF [K+] and initiates cortical spreading depression, while activation raises CSF [Na+] and causes migraine. In this study, we examined levels of specific Na+, K+-ATPase inhibitors, endogenous ouabain-like compounds (EOLC), in CSF from migraineurs and controls. CSF EOLC levels were significantly lower during ictal migraine (0.4 nM +/- 0.09) than from either controls (1.8 nM +/- 0.4) or interictal migraineurs (3.1 nM +/- 1.9). Blood plasma EOLC levels were higher in migraineurs than controls, but did not differ between ictal and interictal states. In a Sprague-Dawley rat model of nitroglycerin-triggered central sensitization, we changed the concentrations of EOLC and CSF sodium, and measured aversive mechanical threshold (von Frey hairs), trigeminal nucleus caudalis activation (cFos), and CSF [Na+] (ultra-high field 23Na MRI). Animals were sensitized by three independent treatments: intraperitoneal nitroglycerin, immunodepleting EOLC from cerebral ventricles, or cerebroventricular infusion of higher CSF [Na+]. Conversely, nitroglycerin-triggered sensitization was prevented by either vascular or cerebroventricular delivery of the specific Na+, K+-ATPase inhibitor, ouabain. These results affirm our hypothesis that higher CSF [Na+] is linked to human migraine and to a rodent migraine model, and demonstrate that EOLC regulates them both. Our data suggest that altered choroid plexus Na+, K+-ATPase activity is a common source of these changes, and may be the initiating mechanism in migraine.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Íons/metabolismo , Transtornos de Enxaqueca/etiologia , Transtornos de Enxaqueca/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Adolescente , Adulto , Idoso , Animais , Plexo Corióideo/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ouabaína/metabolismo , Ratos , Ratos Sprague-Dawley , Adulto Jovem
2.
Restor Neurol Neurosci ; 34(3): 433-41, 2016 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-27080073

RESUMO

PURPOSE: Major depression and related mood disorders are the most common long-term outcomes associated with traumatic brain injury (TBI). Given the potentially debilitating consequences of depression, and the fact that TBI patients are frequently refractory to antidepressant drugs, new therapies are clearly needed. We hypothesized that human bone marrow-derived mesenchymal stem cells (hMSC), delivered intravenously, can effectively treat TBI-induced depression and other behavioral deficits associated with TBI. METHODS: Rats (n = 8 per group) were subjected to experimental TBI or control sham operation. Six hours post TBI, rats were treated with 1×106 hMSC or vehicle control. Immediately after TBI and prior to hMSC or control treatment, rats were subjected to either targeted precision x-ray irradiation to eliminate subventricular zone (SVZ) proliferation or sham irradiation. One week after TBI, SVZ irradiation, and hMSC treatment, rats were evaluated for the depression-like behavior, anhedonia, using the two-bottle saccharin preference paradigm; and for working memory using the novel object recognition test. RESULTS: TBI resulted in a 54% (p≤0.05) decrease in saccharin preference scores while treatment of TBI with hMSC fully prevented this anhedonic behavior. TBI was also found to produce a 73% (p≤0.05) decrease in novel object interaction time, indicating impaired working memory, and was similarly improved by treatment with hMSC. The ability of hMSC to prevent TBI-associated depression and working memory impairment was eliminated when SVZ proliferation was inhibited by irradiation. CONCLUSIONS: This work has identified a possible role for hMSC in the treatment of TBI-induced depression and other behaviors and suggests a mechanistic role for proliferative cells of the SVZ proliferation in hMSC efficacy.


Assuntos
Anedonia/fisiologia , Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/etiologia , Proliferação de Células/fisiologia , Comportamento Exploratório , Humanos , Comportamento Impulsivo/fisiologia , Ventrículos Laterais/citologia , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/fisiologia , Lesões por Radiação/complicações , Lesões por Radiação/terapia , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA