Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 88(9): 3681-3693, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37548622

RESUMO

The influence of sprouting on tiger nut's (TN) nutritional, functional, and phytochemical quality was examined, and the flour used for bread making to evaluate the feasibility as a functional ingredient. TN was sprouted and sampled at 3 days intervals for 12 days, dried and milled into flour and analyzed. Subsequently, 25% of wheat flour (WF) was replaced with the 9 days-sprouted TN flour for bread. Sprouting for 9 days increased the protein content from 9.19 ± 0.04 to 9.79 ± 0.15 g/100 g dry matter (DM), fiber from 6.75 ± 0.16 to 9.27 ± 0.44 g/100 g DM, and ash from 2.34 ± 0.10 to 2.70 ± 0.06 g/100 g DM but decreased fat content from 26.10 ± 0.18 to 23.18 ± 0.43 g/100 g DM and soluble sugar from 33.13 ± 1.25 to 23.75 ± 1.44 °Bx. We observed increases in the polyphenols (94.16 ± 6.43-214.23 ± 6.98 mg GAE/100 g) and ascorbic acid (26.66 ± 0.17-65.13 ± 0.19 mg AE/100 g) and decreases in the cyanogenic glycosides (273.79 ± 0.37-231.54 ± 3.53 mg/100 g) and oxalates (19.04 ± 1.14-5.65 ± 0.93 mg/100 g) contents. Sprouting decreased the particle size and increased the water retention and swelling power of TN flour. WF bread was described as stretchy, sweet, and creamy, whereas sprouted TN bread was brown, nutty, and wheat-like. Consumer acceptance for the sprouted TN bread was comparable to WF bread, showing the possible application in bread making. PRACTICAL APPLICATION: The outcome of the study could help to exploit the nutri-functional and phytochemical benefits of sprouted TN in the baking industry for producing acceptable products. This would enhance the utility of TN for food in regions where TNs grows.


Assuntos
Pão , Farinha , Triticum/química , Nutrientes , Compostos Fitoquímicos
2.
Ultrason Sonochem ; 20(6): 1408-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23711348

RESUMO

This research explores the mechanism of ultrasonic pretreatment on enzymolysis of defatted wheat germ protein (DWGP). The enzymolysis reaction kinetics and thermodynamics were studied after ultrasonic pretreatments using a probe-type sonicator and an ultrasonic cleaning bath, and the results were compared with traditional enzymolysis. The results showed that both the traditional and ultrasonic pretreated enzymolysis fit well to first-order kinetics. Both the temperature and ultrasound had a positive effect on the enzymolysis of DWGP, with temperature playing a dominant role. Under the optimized conditions of DWGP concentration of 1% (w/v), Alcalase concentration of 2000 U/g, time of 10 min and temperature of 50 °C, both the probe and cleaning bath ultrasonic pretreated enzymolysis showed high polypeptide concentrations (231.019 and 231.320 µg/mL) and low energy requirements. In comparison with traditional enzymolysis, these methods significantly increased the reaction rate constant (k) by 166.7% and 144.4%, 92.9% and 85.7%, 28.0% and 28.0%, 16.1% and 12.9% at 20, 30, 40 and 50 °C, and decreased the activation energy (Ea), enthalpy of activation (ΔH), Gibbs free energy of activation (ΔG) and entropy of activation (ΔS) by 68.6% and 62.4%, 74.1% and 67.5%, 34.3% and 31.2%, 1.4% and 1.3%. It can be concluded that ultrasonic pretreatment of DWGP can remarkably improve the enzymolysis efficiency and consequently leads to the production of higher polypeptide yield.


Assuntos
Proteínas de Plantas/metabolismo , Subtilisinas/metabolismo , Termodinâmica , Triticum/metabolismo , Ultrassom , Cinética , Proteínas de Plantas/química , Subtilisinas/química , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA