Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Commun ; 15(1): 8191, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294124

RESUMO

Despite recent work linking mixed phenotype acute leukemia (MPAL) to certain genetic lesions, specific driver mutations remain undefined for a significant proportion of patients and no genetic subtype is predictive of clinical outcomes. Moreover, therapeutic strategy for MPAL remains unclear, and prognosis is overall poor. We performed multiomic single cell profiling of 14 newly diagnosed adult MPAL patients to characterize the inter- and intra-tumoral transcriptional, immunophenotypic, and genetic landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. Despite this, we find that MPAL blasts express a shared stem cell-like transcriptional profile indicative of high differentiation potential. Patients with the highest differentiation potential demonstrate inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in the most stem-like MPAL cells, is applicable to bulk RNA sequencing data and is predictive of survival in an independent patient cohort, suggesting a potential strategy for clinical risk stratification.


Assuntos
Leucemia Aguda Bifenotípica , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Masculino , Feminino , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Adulto , Pessoa de Meia-Idade , Transcriptoma , Prognóstico , Idoso , Perfilação da Expressão Gênica/métodos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Imunofenotipagem , Mutação , Análise de Sequência de RNA/métodos , Regulação Leucêmica da Expressão Gênica
2.
Res Sq ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39184105

RESUMO

Single-cell transcriptomics is valuable for uncovering individual cell properties, particularly in highly heterogeneous systems. However, this technique often results in the analysis of many well-characterized cells, increasing costs and diluting rare cell populations. To address this, we developed PURE-seq (PIP-seq for Rare-cell Enrichment and Sequencing) for scalable sequencing of rare cells. PURE-seq allows direct cell loading from FACS into PIP-seq reactions, minimizing handling and reducing cell loss. PURE-seq reliably captures rare cells, with 60 minutes of sorting capturing tens of cells at a rarity of 1 in 1,000,000. Using PURE-seq, we investigated murine long-term hematopoietic stem cells and their transcriptomes in the context of hematopoietic aging, identifying Egr1 as a potential master regulator of hematopoiesis in the aging context. PURE-seq offers an accessible and reliable method for isolating and sequencing cells that are currently too rare to capture successfully with existing methods.

3.
bioRxiv ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39185152

RESUMO

Single-cell transcriptomics is valuable for uncovering individual cell properties, particularly in highly heterogeneous systems. However, this technique often results in the analysis of many well-characterized cells, increasing costs and diluting rare cell populations. To address this, we developed PURE-seq (PIP-seq for Rare-cell Enrichment and Sequencing) for scalable sequencing of rare cells. PURE-seq allows direct cell loading from FACS into PIP-seq reactions, minimizing handling and reducing cell loss. PURE-seq reliably captures rare cells, with 60 minutes of sorting capturing tens of cells at a rarity of 1 in 1,000,000. Using PURE-seq, we investigated murine long-term hematopoietic stem cells and their transcriptomes in the context of hematopoietic aging, identifying Egr1 as a potential master regulator of hematopoiesis in the aging context. PURE-seq offers an accessible and reliable method for isolating and sequencing cells that are currently too rare to capture successfully with existing methods.

4.
Nat Commun ; 15(1): 477, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216572

RESUMO

Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.


Assuntos
Neurilemoma , Neurofibromatoses , Neurofibromatose 1 , Neurofibromatose 2 , Animais , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/metabolismo , Neurofibromatoses/patologia , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromatose 2/genética , Neurofibromatose 2/patologia , Células de Schwann/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
5.
JAMA Netw Open ; 6(8): e2329186, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589977

RESUMO

Importance: Central nervous system (CNS)-penetrant systemic therapies have significantly advanced care for patients with melanoma brain metastases. However, improved understanding of the molecular landscape and microenvironment of these lesions is needed to both optimize patient selection and advance treatment approaches. Objective: To evaluate how bulk and single-cell genomic features of melanoma brain metastases are associated with clinical outcome and treatment response. Design, Setting, and Participants: This cohort study analyzed bulk DNA sequencing and single nuclear RNA-sequencing data from resected melanoma brain metastases and included 94 consecutive patients with a histopathologically confirmed diagnosis of melanoma brain metastasis who underwent surgical resection at a single National Comprehensive Cancer Network cancer center in San Francisco, California, from January 1, 2009, to December 31, 2022. Exposure: A Clinical Laboratory Improvement Amendments-certified targeted sequencing assay was used to analyze tumor resection specimens, with a focus on BRAF V600E alteration. For frozen pathologic specimens from CNS treatment-naive patients undergoing surgical resection, commercial single nuclear RNA sequencing approaches were used. Main Outcomes and Measures: The primary outcome was overall survival (OS). Secondary outcomes included CNS progression-free survival (PFS), microenvironmental composition with decreased T-cell and macrophage populations, and responses to immunotherapy. Results: To correlate molecular status with clinical outcome, Kaplan-Meier survival analysis of 94 consecutive patients (median age, 64 years [range, 24-82 years]; 70 men [74%]) with targeted BRAF alteration testing showed worse median intracranial PFS (BRAF variant: 3.6 months [IQR, 0.1-30.6 months]; BRAF wildtype: 11.0 months [IQR, 0.8-81.5 months]; P < .001) and OS (BRAF variant: 9.8 months [IQR, 2.5-69.4 months]; BRAF wildtype: 23.2 months [IQR, 1.1-102.5 months]; P = .005; log-rank test) in BRAF V600E variant tumors. Multivariable Cox proportional hazards regression analysis revealed that BRAF V600E status was an independent variable significantly associated with both PFS (hazard ratio [HR], 2.65; 95% CI, 1.54-4.57; P < .001) and OS (HR, 1.96; 95% CI, 1.08-3.55; P = .03). For the 45 patients with resected melanoma brain metastases undergoing targeted DNA sequencing, molecular classification recapitulated The Cancer Genome Atlas groups (NRAS variant, BRAF variant, NF1 variant, and triple wildtype) with no subtype enrichment within the brain metastasis cohort. On a molecular level, BRAF V600E variant lesions were found to have a significantly decreased tumor mutation burden. Moreover, single nuclear RNA sequencing of treatment-naive BRAF V600E variant (n = 3) brain metastases compared with BRAF wildtype (n = 3) brain metastases revealed increased immune cell populations in BRAF wildtype tumors (mean [SD], 11% [4.1%] vs 3% [1.6%] CD45-positive cells; P = .04). Survival analysis of postoperative immunotherapy responses by BRAF status revealed that BRAF wildtype lesions were associated with a response to checkpoint inhibition (median OS: with immunotherapy, undefined; without immunotherapy, 13.0 months [range, 1.1-61.7 months]; P = .001; log-rank test) while BRAF variant lesions (median OS: with immunotherapy, 9.8 months [range, 2.9-39.8 months]; without immunotherapy, 9.5 months [range, 2.5-67.2 months]; P = .81; log-rank test) were not. Conclusions and Relevance: This molecular analysis of patients with resected melanoma brain metastases found that BRAF V600E alteration is an important translational biomarker associated with worse clinical outcomes, differential microenvironmental composition, and benefit from immunotherapy. Patients with BRAF V600E variant melanoma brain metastases may thus benefit from alternative CNS-penetrant systemic regimens.


Assuntos
Neoplasias Encefálicas , Melanoma , Masculino , Humanos , Pessoa de Meia-Idade , Estudos de Coortes , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Imunoterapia , Melanoma/genética , Melanoma/terapia , Microambiente Tumoral
6.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292835

RESUMO

Mixed phenotype acute leukemia (MPAL) is a leukemia whose biologic drivers are poorly understood, therapeutic strategy remains unclear, and prognosis is poor. We performed multiomic single cell (SC) profiling of 14 newly diagnosed adult MPAL patients to characterize the immunophenotypic, genetic, and transcriptional landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. However, progressive acquisition of mutations is associated with increased expression of immunophenotypic markers of immaturity. Using SC transcriptional profiling, we find that MPAL blasts express a stem cell-like transcriptional profile distinct from other acute leukemias and indicative of high differentiation potential. Further, patients with the highest differentiation potential demonstrated inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in this cohort, is applicable to bulk RNA sequencing data and was predictive of survival in an independent patient cohort, suggesting utility for clinical risk stratification.

7.
Science ; 379(6636): 1023-1030, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893254

RESUMO

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Assuntos
Anfirregulina , Astrócitos , Comunicação Autócrina , Testes Genéticos , Técnicas Analíticas Microfluídicas , Microglia , Astrócitos/fisiologia , Testes Genéticos/métodos , Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas/métodos , Microglia/fisiologia , Anfirregulina/genética , Comunicação Autócrina/genética , Expressão Gênica , Humanos
8.
Nat Biotechnol ; 41(11): 1557-1566, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36879006

RESUMO

Current single-cell RNA-sequencing approaches have limitations that stem from the microfluidic devices or fluid handling steps required for sample processing. We develop a method that does not require specialized microfluidic devices, expertise or hardware. Our approach is based on particle-templated emulsification, which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions with only a vortexer. Particle-templated instant partition sequencing (PIP-seq) accommodates a wide range of emulsification formats, including microwell plates and large-volume conical tubes, enabling thousands of samples or millions of cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity transcriptomes in mouse-human mixing studies, is compatible with multiomics measurements and can accurately characterize cell types in human breast tissue compared to a commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute leukemia using PIP-seq reveals the emergence of heterogeneity within chemotherapy-resistant cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible and scalable next-generation workflow that extends single-cell sequencing to new applications.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microfluídica , Humanos , Animais , Camundongos , Microfluídica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Genômica/métodos , Transcriptoma/genética
9.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074872

RESUMO

Cell-cell interactions are important to numerous biological systems, including tissue microenvironments, the immune system, and cancer. However, current methods for studying cell combinations and interactions are limited in scalability, allowing just hundreds to thousands of multicell assays per experiment; this limited throughput makes it difficult to characterize interactions at biologically relevant scales. Here, we describe a paradigm in cell interaction profiling that allows accurate grouping of cells and characterization of their interactions for tens to hundreds of thousands of combinations. Our approach leverages high-throughput droplet microfluidics to construct multicellular combinations in a deterministic process that allows inclusion of programmed reagent mixtures and beads. The combination droplets are compatible with common manipulation and measurement techniques, including imaging, barcode-based genomics, and sorting. We demonstrate the approach by using it to enrich for chimeric antigen receptor (CAR)-T cells that activate upon incubation with target cells, a bottleneck in the therapeutic T cell engineering pipeline. The speed and control of our approach should enable valuable cell interaction studies.


Assuntos
Bioensaio/métodos , Comunicação Celular/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Animais , Comunicação Celular/genética , Genômica/métodos , Humanos
10.
Biotechnol J ; 17(4): e2100483, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088927

RESUMO

Targeting specific cells for sequencing is important for applications in cancer, microbiology, and infectious disease. Nucleic acid cytometry (NAC) is a powerful approach for accomplishing this because it allows specific cells to be isolated based on sequence biomarkers that are otherwise impossible to detect. However, existing methods require specialized microfluidic devices, limiting adoption. Here, a modified workflow is described that uses particle-templated emulsification (PTE) and flow cytometry to conduct the essential steps of cell detection and sorting normally accomplished by microfluidics. Our microfluidic-free workflow allows facile isolation and sequencing of cells, viruses, and nucleic acids and thus provides a powerful enrichment approach for targeted sequencing applications.


Assuntos
Ácidos Nucleicos , Citometria de Fluxo/métodos , Hidrogéis , Dispositivos Lab-On-A-Chip , Microfluídica , Ácidos Nucleicos/genética
11.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951726

RESUMO

The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro-B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro- to pre-B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1's critical, dose-dependent role as a hematopoietic euchromatin gatekeeper.


Assuntos
Agamaglobulinemia/genética , Cromatina/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Adolescente , Adulto , Linfócitos B/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Criança , Pré-Escolar , Células Dendríticas/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lactente , Linfopoese/genética , Masculino , Mutação/genética , Células Precursoras de Linfócitos B/fisiologia , Células-Tronco/fisiologia , Adulto Jovem
12.
Anal Chem ; 93(20): 7422-7429, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33971091

RESUMO

Targeted sequencing enables sensitive and cost-effective analysis by focusing resources on molecules of interest. Existing methods, however, are limited in enrichment power and target capture length. Here, we present a novel method that uses compound nucleic acid cytometry to achieve million-fold enrichments of molecules >10 kbp in length using minimal prior target information. We demonstrate the approach by sequencing HIV proviruses in infected individuals. Our method is useful for rare target sequencing in research and clinical applications, including for identifying cancer-associated mutations or sequencing viruses infecting cells.


Assuntos
Ácidos Nucleicos , Vírus , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ácidos Nucleicos/genética , Provírus , Análise de Sequência de DNA , Vírus/genética
13.
Sci Rep ; 11(1): 10857, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035349

RESUMO

Barcode beads allow efficient nucleic acid tagging in single cell genomics. Current barcode designs, however, are fabricated with a particular application in mind. Repurposing to novel targets, or altering to add additional targets as information is obtained is possible but the result is suboptimal. Here, we describe a modular framework that simplifies generation of multifunctional beads and allows their easy extension to new targets.


Assuntos
Genômica/métodos , Microfluídica/métodos , Análise de Célula Única/métodos , Biomarcadores Tumorais , Código de Barras de DNA Taxonômico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/etiologia , Transcriptoma
14.
Nat Commun ; 12(1): 1583, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707421

RESUMO

Studies of acute myeloid leukemia rely on DNA sequencing and immunophenotyping by flow cytometry as primary tools for disease characterization. However, leukemia tumor heterogeneity complicates integration of DNA variants and immunophenotypes from separate measurements. Here we introduce DAb-seq, a technology for simultaneous capture of DNA genotype and cell surface phenotype from single cells at high throughput, enabling direct profiling of proteogenomic states in tens of thousands of cells. To demonstrate the approach, we analyze the disease of three patients with leukemia over multiple treatment timepoints and disease recurrences. We observe complex genotype-phenotype dynamics that illustrate the subtlety of the disease process and the degree of incongruity between blast cell genotype and phenotype in different clinical scenarios. Our results highlight the importance of combined single-cell DNA and protein measurements to fully characterize the heterogeneity of leukemia.


Assuntos
DNA/genética , Estudos de Associação Genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Análise de Célula Única/métodos , Sequência de Bases , Linhagem Celular Tumoral , Técnicas de Genotipagem , Humanos , Imunofenotipagem , Células Jurkat , Análise de Sequência de DNA , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
15.
Sci Rep ; 11(1): 4351, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623093

RESUMO

Droplet libraries consisting of many reagents encapsulated in separate droplets are necessary for applications of microfluidics, including combinatorial chemical synthesis, DNA-encoded libraries, and massively multiplexed PCR. However, existing approaches for generating them are laborious and impractical. Here, we describe an automated approach using a commercial array spotter. The approach can controllably emulsify hundreds of different reagents in a fraction of the time of manual operation of a microfluidic device, and without any user intervention. We demonstrate that the droplets produced by the spotter are similarly uniform to those produced by microfluidics and automate the generation of a ~ 2 mL emulsion containing 192 different reagents in ~ 4 h. The ease with which it can generate high diversity droplet libraries should make combinatorial applications more feasible in droplet microfluidics. Moreover, the instrument serves as an automated droplet generator, allowing execution of droplet reactions without microfluidic expertise.


Assuntos
Automação Laboratorial/métodos , Microfluídica/métodos , Automação Laboratorial/instrumentação , Emulsões/química , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Lipídeos/química , Microfluídica/instrumentação , Bibliotecas de Moléculas Pequenas/química
16.
Adv Mater ; 32(52): e2005346, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33206435

RESUMO

Bioprinting is a powerful technology with the potential to transform medical device manufacturing, organ replacement, and the treatment of diseases and physiologic malformations. However, current bioprinters are unable to reliably print the fundamental unit of all living things, single cells. A high-definition single-cell printing, a novel microfluidic technology, is presented here that can accurately print single cells from a mixture of multiple candidates. The bioprinter employs a highly miniaturized microfluidic sorter to deterministically select single cells of interest for printing, achieving an accuracy of ≈10 µm and speed of ≈100 Hz. This approach is demonstrated by fabricating intricate cell patterns with pre-defined features through selective single-cell printing. The approach is used to synthesize well-defined spheroids with controlled composition and morphology. The speed, accuracy, and flexibility of the approach will advance bioprinting to enable new studies in organoid science, tissue engineering, and spatially targeted cell therapies.


Assuntos
Bioimpressão/métodos , Linhagem Celular Tumoral , Humanos , Dispositivos Lab-On-A-Chip , Organoides/metabolismo
17.
Nature ; 587(7834): 477-482, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116311

RESUMO

Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1-3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.


Assuntos
Células Clonais/patologia , Análise Mutacional de DNA , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Análise de Célula Única , Separação Celular , Células Clonais/metabolismo , Humanos , Imunofenotipagem
18.
Anal Chem ; 92(21): 14616-14623, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33049138

RESUMO

Analyzing every cell in a diverse sample provides insight into population-level heterogeneity, but abundant cell types dominate the analysis and rarer populations are scarcely represented in the data. To focus on specific cell types, the current paradigm is to physically isolate subsets of interest prior to analysis; however, it remains difficult to isolate and then single-cell sequence such populations because of compounding losses. Here, we describe an alternative approach that selectively merges cells with reagents to achieve enzymatic reactions without having to physically isolate cells. We apply this technique to perform single-cell transcriptome and genome sequencing of specific cell subsets. Our method for analyzing heterogeneous populations obviates the need for pre- or post-enrichment and simplifies single-cell workflows, making it useful for other applications in single-cell biology, combinatorial chemical synthesis, and drug screening.


Assuntos
Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Fluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
19.
Nat Commun ; 11(1): 4803, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968068

RESUMO

Meningiomas are the most common primary intracranial tumors, but the molecular drivers of meningioma tumorigenesis are poorly understood. We hypothesized that investigating intratumor heterogeneity in meningiomas would elucidate biologic drivers and reveal new targets for molecular therapy. To test this hypothesis, here we perform multiplatform molecular profiling of 86 spatially-distinct samples from 13 human meningiomas. Our data reveal that regional alterations in chromosome structure underlie clonal transcriptomic, epigenomic, and histopathologic signatures in meningioma. Stereotactic co-registration of sample coordinates to preoperative magnetic resonance images further suggest that high apparent diffusion coefficient (ADC) distinguishes meningioma regions with proliferating cells enriched for developmental gene expression programs. To understand the function of these genes in meningioma, we develop a human cerebral organoid model of meningioma and validate the high ADC marker genes CDH2 and PTPRZ1 as potential targets for meningioma therapy using live imaging, single cell RNA sequencing, CRISPR interference, and pharmacology.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Imageamento por Ressonância Magnética/métodos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Idoso , Antígenos CD/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Caderinas/genética , Imagem de Difusão por Ressonância Magnética/métodos , Epigenômica , Feminino , Marcadores Genéticos , Genômica , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Transcriptoma
20.
Cell Rep ; 30(5): 1300-1309.e5, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023450

RESUMO

Ependymomas exist within distinct genetic subgroups, but the molecular diversity within individual ependymomas is unknown. We perform multiplatform molecular profiling of 6 spatially distinct samples from an ependymoma with C11orf95-RELA fusion. DNA methylation and RNA sequencing distinguish clusters of samples according to neuronal development gene expression programs that could also be delineated by differences in magnetic resonance blood perfusion. Exome sequencing and phylogenetic analysis reveal epigenomic intratumor heterogeneity and suggest that chromosomal structural alterations may precede accumulation of single-nucleotide variants during ependymoma tumorigenesis. In sum, these findings shed light on the oncogenesis and intratumor heterogeneity of ependymoma.


Assuntos
Ependimoma/genética , Epigenômica , Perfilação da Expressão Gênica , Heterogeneidade Genética , Adulto , Diferenciação Celular/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Ependimoma/diagnóstico por imagem , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Mutação/genética , Neurônios/patologia , Filogenia , Proteínas/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA