RESUMO
OBJECTIVE: Minimally traumatic surgical techniques and advances in cochlear implant (CI) electrode array designs have allowed acoustic hearing present in a CI candidate prior to surgery to be preserved postoperatively. As a result, these patients benefit from combined electric-acoustic stimulation (EAS) postoperatively. However, 30% to 40% of EAS CI users experience a partial loss of hearing up to 30 dB after surgery. This additional hearing loss is generally not severe enough to preclude use of acoustic amplification; however, it can still impact EAS benefits. The use of electrocochleography (ECoG) measures of peripheral hair cell and neural auditory function have shed insight into the pathophysiology of postimplant loss of residual acoustic hearing. The present study aims to assess the long-term stability of ECoG measures and to establish ECoG as an objective method of monitoring residual hearing over the course of EAS CI use. We hypothesize that repeated measures of ECoG should remain stable over time for EAS CI users with stable postoperative hearing preservation. We also hypothesize that changes in behavioral audiometry for EAS CI users with loss of residual hearing should also be reflected in changes in ECoG measures. DESIGN: A pool of 40 subjects implanted under hearing preservation protocol was included in the study. Subjects were seen at postoperative visits for behavioral audiometry and ECoG recordings. Test sessions occurred 0.5, 1, 3, 6, 12 months, and annually after 12 months postoperatively. Changes in pure-tone behavioral audiometric thresholds relative to baseline were used to classify subjects into two groups: one group with stable acoustic hearing and another group with loss of acoustic hearing. At each test session, ECoG amplitude growth functions for several low-frequency stimuli were obtained. The threshold, slope, and suprathreshold amplitude at a fixed stimulation level was obtained from each growth function at each time point. Longitudinal linear mixed effects models were used to study trends in ECoG thresholds, slopes, and amplitudes for subjects with stable hearing and subjects with hearing loss. RESULTS: Preoperative, behavioral audiometry indicated that subjects had an average low-frequency pure-tone average (125 to 500 Hz) of 40.88 ± 13.12 dB HL. Postoperatively, results showed that ECoG thresholds and amplitudes were stable in EAS CI users with preserved residual hearing. ECoG thresholds increased (worsened) while ECoG amplitudes decreased (worsened) for those with delayed hearing loss. The slope did not distinguish between EAS CI users with stable hearing and subjects with delayed loss of hearing. CONCLUSIONS: These results provide a new application of postoperative ECoG as an objective tool to monitor residual hearing and understand the pathophysiology of delayed hearing loss. While our measures were conducted with custom-designed in-house equipment, CI companies are also designing and implementing hardware and software adaptations to conduct ECoG recordings. Thus, postoperative ECoG recordings can potentially be integrated into clinical practice.
Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva , Humanos , Estimulação Acústica , Audiometria de Resposta Evocada/métodos , Implante Coclear/métodos , Perda Auditiva/reabilitação , Surdez/reabilitação , Audiometria de Tons Puros , Limiar Auditivo , Estimulação ElétricaRESUMO
Acoustic hearing can be preserved after cochlear implant (CI) surgery, allowing for combined electric-acoustic stimulation (EAS) and superior speech understanding compared to electric-only hearing. Among patients who initially retain useful acoustic hearing, 30-40 % experience a delayed hearing loss that occurs 3 or more months after CI activation. Increases in electrode impedances have been associated with delayed loss of residual acoustic hearing, suggesting a possible role of intracochlear inflammation/fibrosis as reported by Scheperle et al. (Hear Res 350:45-57, 2017) and Shaul et al. (Otol Neurotol 40(5):e518-e526, 2019). These studies measured only total impedance. Total impedance consists of a composite of access resistance, which reflects resistance of the intracochlear environment, and polarization impedance, which reflects resistive and capacitive properties of the electrode-electrolyte interface as described by Dymond (IEEE Trans Biomed Eng 23(4):274-280, 1976) and Tykocinski et al. (Otol Neurotol 26(5):948-956, 2005). To explore the role of access and polarization impedance components in loss of residual acoustic hearing, these measures were collected from Nucleus EAS CI users with stable acoustic hearing and subsequent precipitous loss of hearing. For the hearing loss group, total impedance and access resistance increased over time while polarization impedance remained stable. For the stable hearing group, total impedance and access resistance were stable while polarization impedance declined. Increased access resistance rather than polarization impedance appears to drive the increase in total impedances seen with loss of hearing. Moreover, access resistance has been correlated with intracochlear fibrosis/inflammation in animal studies as observed by Xu et al. (Hear Res 105(1-2):1-29, 1997) and Tykocinski et al. (Hear Res 159(1-2):53-68, 2001). These findings thus support intracochlear inflammation as one contributor to loss of acoustic hearing in our EAS CI population.
Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva , Percepção da Fala , Estimulação Acústica , Acústica , Animais , Surdez/cirurgia , Impedância Elétrica , Estimulação Elétrica , Fibrose , Audição , Perda Auditiva/reabilitação , Humanos , Inflamação/cirurgiaRESUMO
Changes in cochlear implant (CI) design and surgical techniques have enabled the preservation of residual acoustic hearing in the implanted ear. While most Nucleus Hybrid L24 CI users retain significant acoustic hearing years after surgery, 6-17 % experience a complete loss of acoustic hearing (Roland et al. Laryngoscope. 126(1):175-81. (2016), Laryngoscope. 128(8):1939-1945 (2018); Scheperle et al. Hear Res. 350:45-57 (2017)). Electrocochleography (ECoG) enables non-invasive monitoring of peripheral auditory function and may provide insight into the pathophysiology of hearing loss. The ECoG response is evoked using an acoustic stimulus and includes contributions from the hair cells (cochlear microphonic-CM) as well as the auditory nerve (auditory nerve neurophonic-ANN). Seven Hybrid L24 CI users with complete loss of residual hearing months after surgery underwent ECoG measures before and after loss of hearing. While significant reductions in CMs were evident after hearing loss, all participants had measurable CMs despite having no measurable acoustic hearing. None retained measurable ANNs. Given histological data suggesting stable hair cell and neural counts after hearing loss (e.g., Quesnel et al. Hear Res. 333:225-234. (2016)), the loss of ECoG and audiometric hearing may reflect reduced synaptic input. This is consistent with the theory that residual CM responses coupled with little to no ANN responses reflect a "disconnect" between hair cells and auditory nerve fibers (Fontenot et al. Ear Hear. 40(3):577-591. 2019). This "disconnection" may prevent proper encoding of auditory stimulation at higher auditory pathways, leading to a lack of audiometric responses, even in the presence of viable cochlear hair cells.
Assuntos
Implantes Cocleares , Células Ciliadas Auditivas/fisiologia , Perda Auditiva , Estimulação Acústica , Estimulação Elétrica , Audição , Perda Auditiva/terapia , HumanosRESUMO
OBJECTIVES: The rise in the use of cochlear implants (CIs) has continued to fuel research aimed at improving surgical approaches and the preservation of residual hearing. Current in vivo models involve small animals not suitable for evaluating full-sized CIs nor are prohibitively expensive nonhuman primates. The objective of this study was to develop and evaluate an in vivo model of cochlear implantation in sheep. METHODS: Eight adult, female sheep were implanted with full-sized CIs from three manufacturers using a retrofacial approach to the round window. Partial electrode insertions were performed to a depth of 10 to 12âmm before closure. Round window electrocochleography (ECoG) and auditory brainstem responses (ABR) were conducted during and after surgery. Following a 30-day implantation, cochleae were explanted and imaged using both x-ray microscopy and histology. RESULTS: The surgery was well tolerated although limited complications were observed in three of eight sheep. Electrode insertions were up to 12âmm before insertion resistance noted. ECoG and ABR responses were reduced postimplantation, reflecting changes in cochlear mechanics due to the presence of the implant, and/or insertion trauma. Histological and radiological image analysis showed the presence of intracochlear fibrosis as well as one instance of tip fold-over. CONCLUSIONS: The use of sheep presents a feasible live-animal model to study cochlear implantations. Full-sized implants as well as surgical techniques can be evaluated on functional outcomes such as ABR and ECoG as well as histological markers for residual hearing including intracochlear fibrosis. Use of this model and surgical approach has potential to evaluate CIs and surgical techniques in both the acute and chronic setting.
Assuntos
Implante Coclear , Implantes Cocleares , Animais , Audiometria de Resposta Evocada , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Feminino , Projetos Piloto , Janela da Cóclea/cirurgia , OvinosRESUMO
Cochlear implantation, a surgical method to bypass cochlear hair cells and directly stimulate the spiral ganglion, is the standard treatment for severe-to-profound hearing loss. Changes in cochlear implant electrode array design and surgical approach now allow for preservation of acoustic hearing in the implanted ear. Electrocochleography (ECochG) was performed in eight hearing preservation subjects to assess hair cell and neural function and elucidate underlying genetic hearing loss. Three subjects had pathogenic variants in TMPRSS3 and five had pathogenic variants in genes known to affect the cochlear sensory partition. The mechanism by which variants in TMPRSS3 cause genetic hearing loss is unknown. We used a 500-Hz tone burst to record ECochG responses from an intracochlear electrode. Responses consist of a cochlear microphonic (hair cell) and an auditory nerve neurophonic. Cochlear microphonics did not differ between groups. Auditory nerve neurophonics were smaller, on average, in subjects with TMPRSS3 deafness. Results of this proof-of-concept study provide evidence that pathogenic variants in TMPRSS3 may impact function of the spiral ganglion. While ECochG as a clinical and research tool has been around for decades, this study illustrates a new application of ECochG in the study of genetic hearing and deafness in vivo.
Assuntos
Cóclea/metabolismo , Cóclea/fisiopatologia , Surdez/metabolismo , Surdez/fisiopatologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Serina Endopeptidases/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/fisiopatologia , Estimulação Acústica/métodos , Adolescente , Adulto , Audiometria de Resposta Evocada/métodos , Criança , Implante Coclear/métodos , Implantes Cocleares , Nervo Coclear/metabolismo , Nervo Coclear/fisiologia , Feminino , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Perda Auditiva/metabolismo , Perda Auditiva/fisiopatologia , Humanos , Masculino , Proteínas de Membrana/fisiologia , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Cochlear implantation is an effective habilitation modality for adults with significant hearing loss. However, post-implant performance is variable. A portion of this variance in outcome can be attributed to clinical factors. Recent physiological studies suggest that the health of the spiral ganglion also impacts post-operative cochlear implant outcomes. The goal of this study was to determine whether genetic factors affecting spiral ganglion neurons may be associated with cochlear implant performance. METHODS: Adults with post-lingual deafness who underwent cochlear implantation at the University of Iowa were studied. Pre-implantation evaluation included comprehensive genetic testing for genetic diagnosis. A novel score of genetic variants affecting genes with functional effects in the spiral ganglion was calculated. A Z-scored average of up to three post-operative speech perception tests (CNC, HINT, and AzBio) was used to assess outcome. RESULTS: Genetically determined spiral ganglion health affects cochlear implant outcomes, and when considered in conjunction with clinically determined etiology of deafness, accounts for 18.3% of the variance in postoperative speech recognition outcomes. Cochlear implant recipients with deleterious genetic variants that affect the cochlear sensory organ perform significantly better on tests of speech perception than recipients with deleterious genetic variants that affect the spiral ganglion. CONCLUSION: Etiological diagnosis of deafness including genetic testing is the single largest predictor of postoperative speech outcomes in adult cochlear implant recipients. A detailed understanding of the genetic underpinning of hearing loss will better inform pre-implant counseling. The method presented here should serve as a guide for further research into the molecular physiology of the peripheral auditory system and cochlear implants.
Assuntos
Implantes Cocleares , Surdez/cirurgia , Audição/fisiologia , Gânglio Espiral da Cóclea/cirurgia , Adolescente , Adulto , Idoso , Audiometria , Cóclea/cirurgia , Implante Coclear , Surdez/genética , Feminino , Variação Genética , Genômica , Perda Auditiva/cirurgia , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Modelos Neurológicos , Proteínas de Neoplasias/genética , Serina Endopeptidases/genética , Percepção da Fala/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Resultado do TratamentoRESUMO
Hearing impairment is the most common sensory deficit. It is frequently caused by the expression of an allele carrying a single dominant missense mutation. Herein, we show that a single intracochlear injection of an artificial microRNA carried in a viral vector can slow progression of hearing loss for up to 35 weeks in the Beethoven mouse, a murine model of non-syndromic human deafness caused by a dominant gain-of-function mutation in Tmc1 (transmembrane channel-like 1). This outcome is noteworthy because it demonstrates the feasibility of RNA-interference-mediated suppression of an endogenous deafness-causing allele to slow progression of hearing loss. Given that most autosomal-dominant non-syndromic hearing loss in humans is caused by this mechanism of action, microRNA-based therapeutics might be broadly applicable as a therapy for this type of deafness.
Assuntos
Vias Auditivas , Perda Auditiva/prevenção & controle , Proteínas de Membrana/fisiologia , MicroRNAs/genética , Mutação de Sentido Incorreto/genética , Animais , Dependovirus/genética , Perda Auditiva/etiologia , Perda Auditiva/patologia , Humanos , Mecanotransdução Celular , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , MicroRNAs/administração & dosagem , Interferência de RNARESUMO
OBJECTIVE: To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. STUDY DESIGN: Experimental animal study. SETTING: Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. METHODS: A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. RESULTS: Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. CONCLUSIONS: Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.
Assuntos
Apoptose/fisiologia , Implantes Cocleares , Surdez/terapia , Estimulação Elétrica/métodos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição/fisiologia , Gânglio Espiral da Cóclea/patologia , Animais , Surdez/patologia , Surdez/fisiopatologia , Modelos Animais de Doenças , Ratos , Gânglio Espiral da Cóclea/fisiopatologiaRESUMO
HYPOTHESIS: It is possible to implant a stimulating electrode array in the semicircular canals without damaging rotational sensitivity or hearing. The electrodes will evoke robust and precisely controlled eye movements. BACKGROUND: A number of groups are attempting to develop a neural prosthesis to ameliorate abnormal vestibular function. Animal studies demonstrate that electrodes near the canal ampullae can produce electrically evoked eye movements. The target condition of these studies is typically bilateral vestibular hypofunction. Such a device could potentially be more widely useful clinically and would have a simpler roadmap to regulatory approval if it produced minimal or no damage to the native vestibular and auditory systems. METHODS: An electrode array was designed for insertion into the bony semicircular canal adjacent to the membranous canal. It was designed to be sufficiently narrow so as to not compress the membranous canal. The arrays were manufactured by Cochlear, Ltd., and linked to a Nucleus Freedom receiver/stimulator. Seven behaviorally trained rhesus macaques had arrays placed in 2 semicircular canals using a transmastoid approach and "soft surgical" procedures borrowed from Hybrid cochlear implant surgery. Postoperative vestibulo-ocular reflex was measured in a rotary chair. Click-evoked auditory brainstem responses were also measured in the 7 animals using the contralateral ear as a control. RESULTS: All animals had minimal postoperative vestibular signs and were eating within hours of surgery. Of 6 animals tested, all had normal postoperative sinusoidal gain. Of 7 animals, 6 had symmetric postoperative velocity step responses toward and away from the implanted ear. The 1 animal with significantly asymmetric velocity step responses also had a significant sensorineural hearing loss. One control animal that underwent canal plugging had substantial loss of the velocity step response toward the canal-plugged ear. In 5 animals, intraoperative electrically evoked vestibular compound action potential recordings facilitated electrode placement. Postoperatively, electrically evoked eye movements were obtained from electrodes associated with an electrically evoked vestibular compound action potential wave form. Hearing was largely preserved in 6 animals and lost in 1 animal. CONCLUSION: It is possible to implant the vestibular system with prosthetic stimulating electrodes without loss of rotational sensitivity or hearing. Because electrically evoked eye movements can be reliably obtained with the assistance of intraoperative electrophysiology, it is appropriate to consider treatment of a variety of vestibular disorders using prosthetic electrical stimulation. Based on these findings, and others, a feasibility study for the treatment of human subjects with disabling Ménière's disease has begun.
Assuntos
Movimentos Oculares/fisiologia , Audição/fisiologia , Percepção de Movimento/fisiologia , Implantação de Prótese/métodos , Canais Semicirculares/cirurgia , Potenciais de Ação/fisiologia , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Testes Auditivos , Neuroestimuladores Implantáveis , Macaca mulatta , Reflexo Vestíbulo-Ocular/fisiologia , Rotação , Canais Semicirculares/fisiologiaRESUMO
Recent data from feline auditory nerve fibers (ANFs) indicate that electrically stimulated fibers can undergo large degrees of rate adaptation to pulse-train stimuli using pulse rates within the range used by clinical auditory prostheses. However, the application of Hodgkin-Huxley-type models does not produce such adaptation, which occurs over time periods on the order of 100 ms. We describe our development of a computational ANF axon model that incorporates a time-changing external potassium concentration ( [K(+)](ext)) that depends on potassium currents produced by active nodal channel activity. This relatively simple and computationally tractable approach produces poststimulus time histograms that are similar to experimental (cat) data. Furthermore, this mechanism could be easily incorporated into other models to produce much more realistic estimates of the neural coding produced by repeated electric stimulation.
Assuntos
Adaptação Fisiológica/fisiologia , Nervo Coclear/fisiologia , Modelos Neurológicos , Fibras Nervosas/fisiologia , Algoritmos , Animais , Gatos , Estimulação ElétricaRESUMO
The Hodgkin-Huxley (HH) model does not simulate the significant changes in auditory nerve fiber (ANF) responses to sustained stimulation that are associated with neural adaptation. Given that the electric stimuli used by cochlear prostheses can result in adapted responses, a computational model incorporating an adaptation process is warranted if such models are to remain relevant and contribute to related research efforts. In this paper, we describe the development of a modified HH single-node model that includes potassium ion ( K(+)) concentration changes in response to each action potential. This activity-related change results in an altered resting potential, and hence, excitability. Our implementation of K(+)-related changes uses a phenomenological approach based upon K(+) accumulation and dissipation time constants. Modeled spike times were computed using repeated presentations of modeled pulse-train stimuli. Spike-rate adaptation was characterized by rate decrements and time constants and compared against ANF data from animal experiments. Responses to relatively low (250 pulse/s) and high rate (5000 pulse/s) trains were evaluated and the novel adaptation model results were compared against model results obtained without the adaptation mechanism. In addition to spike-rate changes, jitter and spike intervals were evaluated and found to change with the addition of modeled adaptation. These results provide one means of incorporating a heretofore neglected (although important) aspect of ANF responses to electric stimuli. Future studies could include evaluation of alternative versions of the adaptation model elements and broadening the model to simulate a complete axon, and eventually, a spatially realistic model of the electrically stimulated nerve within extracochlear tissues.
Assuntos
Nervo Coclear/fisiologia , Modelos Neurológicos , Fibras Nervosas/fisiologia , Adaptação Fisiológica , Algoritmos , Animais , Gatos , Simulação por Computador , Estimulação Elétrica , Humanos , Sanguessugas , Potenciais da Membrana/fisiologia , Potássio/metabolismoRESUMO
Cochlear implant speech processors typically extract envelope information of speech signals for presentation to the auditory nerve as modulated trains of electric pulses. Recent studies showed the feasibility of recording, at the scalp, the electrically evoked auditory steady-state response using amplitude-modulated electric stimuli. Sinusoidally amplitude-modulated electric stimuli were used to elicit such responses from guinea pigs in order to characterize this response. Response latencies were derived to provide insight regarding neural generator sites. Two distinct sites, one cortical and another more peripheral, were indicated by latency estimates of 22 and 2 ms, respectively, with the former evoked by lower (13-49 Hz) and the latter by higher (55-320 Hz) modulation frequencies. Furthermore, response amplitudes declined with increasing carrier frequency, exhibited a compressive growth with increasing modulation depths, and were sensitive to modulation depths to as low as 5%.