Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Healthc Eng ; 2023: 1406545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284488

RESUMO

Lymphoma and leukemia are fatal syndromes of cancer that cause other diseases and affect all types of age groups including male and female, and disastrous and fatal blood cancer causes an increased savvier death ratio. Both lymphoma and leukemia are associated with the damage and rise of immature lymphocytes, monocytes, neutrophils, and eosinophil cells. So, in the health sector, the early prediction and treatment of blood cancer is a major issue for survival rates. Nowadays, there are various manual techniques to analyze and predict blood cancer using the microscopic medical reports of white blood cell images, which is very steady for prediction and causes a major ratio of deaths. Manual prediction and analysis of eosinophils, lymphocytes, monocytes, and neutrophils are very difficult and time-consuming. In previous studies, they used numerous deep learning and machine learning techniques to predict blood cancer, but there are still some limitations in these studies. So, in this article, we propose a model of deep learning empowered with transfer learning and indulge in image processing techniques to improve the prediction results. The proposed transfer learning model empowered with image processing incorporates different levels of prediction, analysis, and learning procedures and employs different learning criteria like learning rate and epochs. The proposed model used numerous transfer learning models with varying parameters for each model and cloud techniques to choose the best prediction model, and the proposed model used an extensive set of performance techniques and procedures to predict the white blood cells which cause cancer to incorporate image processing techniques. So, after extensive procedures of AlexNet, MobileNet, and ResNet with both image processing and without image processing techniques with numerous learning criteria, the stochastic gradient descent momentum incorporated with AlexNet is outperformed with the highest prediction accuracy of 97.3% and the misclassification rate is 2.7% with image processing technique. The proposed model gives good results and can be applied for smart diagnosing of blood cancer using eosinophils, lymphocytes, monocytes, and neutrophils.


Assuntos
Neoplasias Hematológicas , Leucemia , Neoplasias , Humanos , Masculino , Feminino , Leucócitos , Aprendizado de Máquina , Neoplasias/diagnóstico , Leucemia/diagnóstico , Processamento de Imagem Assistida por Computador/métodos
2.
J Healthc Eng ; 2020: 8017496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509260

RESUMO

The developing countries are still starving for the betterment of health sector. The disease commonly found among the women is breast cancer, and past researches have proven results that if the cancer is detected at a very early stage, the chances to overcome the disease are higher than the disease treated or detected at a later stage. This article proposed cloud-based intelligent BCP-T1F-SVM with 2 variations/models like BCP-T1F and BCP-SVM. The proposed BCP-T1F-SVM system has employed two main soft computing algorithms. The proposed BCP-T1F-SVM expert system specifically defines the stage and the type of cancer a person is suffering from. Expert system will elaborate the grievous stages of the cancer, to which extent a patient has suffered. The proposed BCP-SVM gives the higher precision of the proposed breast cancer detection model. In the limelight of breast cancer, the proposed BCP-T1F-SVM expert system gives out the higher precision rate. The proposed BCP-T1F expert system is being employed in the diagnosis of breast cancer at an initial stage. Taking different stages of cancer into account, breast cancer is being dealt by BCP-T1F expert system. The calculations and the evaluation done in this research have revealed that BCP-SVM is better than BCP-T1F. The BCP-T1F concludes out the 96.56 percentage accuracy, whereas the BCP-SVM gives accuracy of 97.06 percentage. The above unleashed research is wrapped up with the conclusion that BCP-SVM is better than the BCP-T1F. The opinions have been recommended by the medical expertise of Sheikh Zayed Hospital Lahore, Pakistan, and Cavan General Hospital, Lisdaran, Cavan, Ireland.


Assuntos
Neoplasias da Mama/diagnóstico , Mama/diagnóstico por imagem , Computação em Nuvem , Diagnóstico por Computador , Computação em Nuvem/estatística & dados numéricos , Diagnóstico por Computador/estatística & dados numéricos , Detecção Precoce de Câncer , Sistemas Inteligentes , Feminino , Humanos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA