Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Drug Target ; 32(4): 365-380, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38315449

RESUMO

Various cells in our body regularly divide to replace old cells and dead cells. For a living cell to be growing, cell division and differentiation is highly essential. Cancer is characterised by uncontrollable cell division and invasion of other tissues due to dysregulation in the cell cycle. An accumulation of genetic changes or mutations develops through different physical (UV and other radiations), chemical (chewing and smoking of tobacco, chemical pollutants/mutagens), biological (viruses) and hereditary factors that can lead to cancer. Now, cancer is considered as a major death-causing factor worldwide. Due to advancements in technology, treatment like chemotherapy, radiation therapy, bone marrow transplant, immunotherapy, hormone therapy and many more in the rows. Although, it also has some side effects like fatigue, hair fall, anaemia, nausea and vomiting, constipation. Modern improved drug therapies come with severe side effects. There is need for safer, more effective, low-cost treatment with lesser side-effects. Biologically active natural products derived from plants are the emerging strategy to deal with cancer proliferation. Moreover, they possess anti-carcinogenic, anti-proliferative and anti-mutagenic properties with reduced side effects. They also detoxify and remove reactive substances formed by carcinogenic agents. In this article, we discuss different plant-based products and their mechanism of action against cancer.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Imunoterapia
2.
Front Med ; 18(1): 109-127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37721643

RESUMO

Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer. However, knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited. Here, by taking advantage of in situ Hi-C, RNA-sequencing, and chromatin immunoprecipitation sequencing (ChIP-seq), we investigated structural reorganization and functional changes in chromosomal compartments, topologically associated domains (TADs), and CCCTC binding factor (CTCF)-mediated loops in gallbladder cancer (GBC) tissues and cell lines. We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes. Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls. Furthermore, the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial-mesenchymal transition activation were enriched in cancer compared with their control counterparts. Cancer-specific enhancer-promoter loops, which contain multiple transcription factor binding motifs, acted as a central element to regulate aberrant gene expression. Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions. Collectively, our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.

3.
Front Oncol ; 12: 854773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296007

RESUMO

Over the past decades, the aberrant epigenetic modification, apart from genetic alteration, has emerged as dispensable events mediating the transformation of pancreatic cancer (PC). However, the understanding of molecular mechanisms of methylation modifications, the most abundant epigenetic modifications, remains superficial. In this review, we focused on the mechanistic insights of DNA, histone, and RNA methylation that regulate the progression of PC. The methylation regulators including writer, eraser and reader participate in the modification of gene expression associated with cell proliferation, invasion and apoptosis. Some of recent clinical trials on methylation drug targeting were also discussed. Understanding the novel regulatory mechanisms in the methylation modification may offer alternative opportunities to improve therapeutic efficacy to fight against this dismal disease.

4.
ACS Nano ; 16(1): 169-179, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34935348

RESUMO

Functionally modified aptamer conjugates are promising tools for targeted imaging or treatment of various diseases. However, broad applications of aptamer molecules are limited by their in vivo instability. To overcome this challenge, current strategies mostly rely on covalent chemical modification of aptamers, a complicated process that requires case-by-case sequence design, multiple-step synthesis, and purification. Herein, we report a covalent modification-free strategy to enhance the in vivo stability of aptamers. This strategy simply utilizes one-step molecular engineering of aptamers with gold nanoclusters (GNCs) to form GNCs@aptamer self-assemblies. Using Sgc8 as a representative aptamer, the resulting GNCs@Sgc8 assemblies enhance cancer-cell-specific binding and sequential internalization by a receptor-mediated endocytosis pathway. Importantly, the GNCs@aptamer self-assemblies resist nuclease degradation for as long as 48 h, compared to the degradation of aptamer alone at 3 h. In parallel, the tumor-targeted recognition and retention of GNCs@aptamer self-assemblies are dramatically enhanced, indicated by a 9-fold signal increase inside the tumor compared to the aptamer alone. This strategy is to avoid complicated chemical modification of aptamers and can be extended to all aptamers. Our work provides a simple, effective, and universal strategy for enhancing the in vivo stability of any aptamer or its conjugates, thus expanding their imaging and therapeutic applications.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Aptâmeros de Nucleotídeos/química , Ouro/química , Neoplasias/tratamento farmacológico , Endocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA