Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 240: 106509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508473

RESUMO

Hyperglycemia is known as one of the main causes of infertility in human societies. Indole propionic acid (IPA) is produced by intestinal microbiota and has antioxidant and anti-inflammatory properties. This study aims to investigate the effects of IPA on molecular indices of steroidogenesis, ER stress, and apoptosis induced by high glucose (HG) in granulosa cells. Primary GCs, isolated from ovarian follicles of Rats were cultured in 5 mM (control) and 30 mM (HG) of glucose and in the presence of 10 and 20 µM of IPA for 24 h. The cell viability was assessed by MTT. The gene expression of P450SCC, 3ßHSD, CYP19A, BAX, BCL2, and STAR was evaluated by Real-Time PCR. Protein expression of ATF6, PERK, GRP78, and CHOP determined by western blot. Progesterone, estradiol, IL-1ß, and TNF-α were measured by ELISA. HG decreased the viability, and expression of P450SCC, 3ßHSD, CYP19A, BCL2, STAR, and increased BAX. 10 and 20 µM of IPA increased cell viability, expression of P450SCC, 3ßHSD, CYP19A, BCL2 and STAR and decreased BAX compared to the HG group. The expression of ATF6, PERK, GRP78, and CHOP proteins increased by HG and IPA decreased the expression of these proteins compared to the HG group. Also, HG decreased progesterone and estradiol levels and increased IL-1ß and TNF-α. IPA significantly increased progesterone and estradiol and decreased IL-1ß and TNF-α compared to the HG group. IPA can improve the side effects of HG in GCs of rats, as responsible cells for fertility, by improving steroidogenesis, regulation of ER-stress pathway, suppression of inflammation, and apoptosis.


Assuntos
Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Glucose , Células da Granulosa , Indóis , Animais , Feminino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Ratos , Indóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Propionatos/farmacologia , Células Cultivadas , Progesterona/metabolismo , Biomarcadores/metabolismo , Ratos Sprague-Dawley
2.
Front Immunol ; 14: 1280601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022534

RESUMO

Malignancies contain a relatively small number of Mesenchymal stem/stromal cells (MSCs), constituting a crucial tumor microenvironment (TME) component. These cells comprise approximately 0.01-5% of the total TME cell population. MSC differentiation potential and their interaction with the tumor environment enable these cells to affect tumor cells' growth, immune evasion, metastasis, drug resistance, and angiogenesis. This type of MSC, known as cancer-associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/non-tumor cells in the TME and affects their function by producing cytokines, chemokines, and various growth factors to facilitate tumor cell migration, survival, proliferation, and tumor progression. Considering that the effect of different cells on each other in the TME is a multi-faceted relationship, it is essential to discover the role of these relationships for targeting in tumor therapy. Due to the immunomodulatory role and the tissue repair characteristic of MSCs, these cells can help tumor growth from different aspects. CA-MSCs indirectly suppress antitumor immune response through several mechanisms, including decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-associated macrophages (TAMs) and Treg cells, and immune checkpoint expression to reduce effector T cell antitumor responses. Therefore, if these cells can be targeted for treatment so that their population decreases, we can hope for the treatment and improvement of the tumor conditions. Also, various studies show that CA-MSCs in the TME can affect other vital aspects of a tumor, including cell proliferation, drug resistance, angiogenesis, and tumor cell invasion and metastasis. In this review article, we will discuss in detail some of the mechanisms by which CA-MSCs suppress the innate and adaptive immune systems and other mechanisms related to tumor progression.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Humanos , Citocinas/metabolismo , Diferenciação Celular , Imunidade , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
3.
Biomed Pharmacother ; 162: 114615, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011484

RESUMO

Cell therapy is one of the methods that have shown promising results in treating diseases in recent decades. However, the use of different types of cells comes with limitations. The application of immune cells in cell therapy can lead to cytokine storms and inappropriate responses to self-antigens. Also, the use of stem cells has the potential to create tumors. Also, cells may not migrate to the injury site after intravenous injection. Therefore, using exosomes from different cells as therapeutic candidates were proposed. Due to their small size and favorable characteristics, such as biocompatibility and immunocompatibility, the easy storage and isolation, exosomes have attracted much attention. They are used in treating many diseases, including cardiovascular diseases, orthopedic diseases, autoimmune diseases, and cancer. However, the results of various studies have shown that the therapeutic efficiency of exosomes (Exo) can be increased by loading different drugs and microRNAs inside them (encapsulated exosomes). Therefore, analyzing studies investigating encapsulated exosomes' therapeutic ability is critical. In this study, we have examined the studies related to the use of encapsulated exosomes in treating diseases such as cancer and infectious diseases and their use in regenerative medicine. Compared to intact exosomes, the results show that the application of encapsulated exosomes has a higher therapeutic ability. Therefore it is suggested to use this method depending on the treatment type to increase the treatment's efficiency.


Assuntos
Exossomos , MicroRNAs , Exossomos/metabolismo , MicroRNAs/metabolismo , Células-Tronco , Medicina Regenerativa
4.
Iran J Allergy Asthma Immunol ; 21(5): 549-560, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36341563

RESUMO

It is believed that preformed antibodies are responsible for blood transfusion reactions and transplant rejections. In order to remove a tumor, the tissue must be rejected. On the basis of transfusion reaction and transplantation immunology, we hypothesized that allogeneic serum can inhibit tumor growth when injected intra-tumor. Initially, an in vitro cytotoxicity test was conducted using the C57BL/6 serum (intact or decomplemented) in combination with the BALB/c-originating CT26 cell line.  The CT26 cell line was used to establish a mouse model of colon cancer. When the tumor was palpable, C57BL/6 serum was injected intra-tumor. In addition to tumor size, hypoxia, metastatic capacity, angiogenesis, and metabolic and inflammatory status, we evaluated matrix metalloproteinase-2 (MMP)-2 and 9, vascular endothelial growth factor (VEGF)-A, Cluster of Designation (CD) 31, CD38 and interleukine (IL)-10. An in vitro experiment showed that heat-inactivated C57BL/6 serum had significantly lower cytotoxic effects on BALB/c-derived CT26 cells than intact C57BL/6 serum or BALB/c serum. In vivo experiments revealed that tumor size, HIF-1α, MMP-2, and MMP-9 levels were significantly lower in the experimental group than in the control group. In contrast to control animals, allogeneic serum treatment led to marked reductions in CD31, VEGF-1, CD38, and IL-10 levels. A new approach to serum or plasma therapy and allogeneic vaccines for cancer is intra-tumor injection of allogeneic serum. In light of the ease and availability of allogeneic immunotherapies, allogeneic serum and plasma therapy could potentially be used as an alternative monotherapy or in combination with other therapies.


Assuntos
Neoplasias do Colo , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Neoplasias do Colo/terapia , Neovascularização Patológica/terapia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Imunoterapia
5.
Biomedicines ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359230

RESUMO

Colorectal cancer is the third most common cancer in the world. Due to the side effects of common treatments such as chemotherapy and radiotherapy, the use of herbal medicines has received much attention. Artemether (ARM) is an herbal medicine derived from artemisinin, which has many anti-tumor properties. However, factors such as low solubility and short half-life have limited the use of artemether in clinical practice. In this study, we aimed to reduce these limitations by encapsulating artemether in human serum albumin (HSA). The hydrodynamic diameter and the zeta potential value of ARM-ALB nanoparticles (NPs) were 171.3 ± 5.88 nm and -19.1 ± 0.82 mV, respectively. Comparison of the effect of free and encapsulated artemether on CT 26 cell line showed that the use of artemether in capsulated form can reduce the effective concentration of the drug. Additionally, in vivo studies have also shown that albumin-artemether nanoparticles can control tumor growth by increasing the production of cytokine IFN-γ and decreasing the production of IL4. Therefore, ARM-ALB nanoparticles have greater anti-tumor effects than free artemether.

6.
Mini Rev Med Chem ; 22(12): 1619-1630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34645371

RESUMO

Sarcoidosis is a worldwide inflammatory disorder of unknown etiology that is characterized by the formation of non-caseating immune granulomas in involved organs,most commonly in the lungs and eyes. Although clinical manifestations of sarcoidosis depend on the organs involved, the most common symptoms include fatigue, fever, weight loss, eye pain, dyspnea, and chest pain. Sarcoidosis usually undergoes spontaneous regression, yet its chronic form progressively threatens the involved organs through the induction of fibrotic damage. Despite decades of medical research, the etiology of sarcoidosis still remains unclear. Nevertheless, a combination of contributors, including genetic factors, environmental exposures, and microbial agents, is believed to trigger the inflammatory state observed in this disease. Furthermore, a highly polarized Th1 and Th17 response with diminished immunomodulatory mechanisms constitute the most significant immunological event associated with this disorder. Indeed, sarcoid granulomas, which consist of highly activated antigen-presenting cells (APCs) and lymphocytes, maintain a robust specialized niche to facilitate antigen presentation and exaggerated immune responses. Both the unknown etiology and multisystem nature of the disease have hampered the development of specific therapeutics and definitive diagnostic assays for sarcoidosis. Consequently, its diagnosis and treatment still represent a challenging task for clinicians. In this article, we aim to summarize contemporary findings of sarcoidosis and its etiology, pathogenesis, and treatment.


Assuntos
Sarcoidose , Granuloma/diagnóstico , Granuloma/tratamento farmacológico , Humanos , Sarcoidose/diagnóstico , Sarcoidose/tratamento farmacológico
7.
MAGMA ; 35(1): 3-15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34878619

RESUMO

OBJECTIVES: We demonstrated a novel metabolic method based on sequential administration of 5-aminolevulinic acid (ALA) and iron supplement, and ferric ammonium citrate (FAC), for glioblastoma multiforme (GBM) detection using R2' and quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: Intra-cellular iron accumulation in glioblastoma cells treated with ALA and/or FAC was measured. Cell phantoms containing glioblastoma cells and Wistar rats bearing C6 glioblastoma were imaged using a 3 T MRI scanner after sequential administration of ALA and FAC. The relaxivity and QSM analysis were performed on the images. RESULTS: The intra-cellular iron deposition was significantly higher in the glioma cells with sequential treatment of ALA and FAC for 6 h compared to those treated with the controls. The relaxivity and magnetic susceptibility values of the glioblastoma cells and rat brain tumors treated with ALA + FAC (115 ± 5 s-1 for R2', and 0.1 ± 0.02 ppm for magnetic susceptibility) were significantly higher than those treated with the controls (55 ± 18 (FAC), 45 ± 15 (ALA) s-1 for R2', p < 0.05, and 0.03 ± 0.03 (FAC), 0.02 ± 0.02 (ALA) ppm for magnetic susceptibility, p < 0.05). DISCUSSION: Sequential administration of ALA and iron supplements increases the iron deposition in glioblastoma cells, enabling clinical 3 T MRI to detect GBM using R2' or QSM.


Assuntos
Glioblastoma , Ácido Aminolevulínico , Animais , Glioblastoma/diagnóstico por imagem , Ferro , Imageamento por Ressonância Magnética/métodos , Ratos , Ratos Wistar
8.
Oxid Med Cell Longev ; 2021: 5529484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194604

RESUMO

Breast cancer is one of the most common type of tumor and the leading cause of death in the world's female population. Various therapeutic approaches have been used to treat tumors but have not led to complete recovery and have even damaged normal cells in the body. Moreover, metastatic tumors such as breast cancer are much more resistant to treatment, and current treatments have not been very successful in treating them and remain a challenge. Therefore, new approaches should be applied to overcome this problem. Given the importance of hypoxia in tumor survival, we aimed to test the antitumor effects of oxygenated water to decrease hypoxia along with tumor-derived exosomes to target tumor. The purpose of administering oxygenated water and tumor exosomes was to reduce hypoxia and establish an effective immune response against tumor antigens, respectively. For this purpose, the breast cancer mice model was induced using the 4T1 cell line in Balb/c mice and treated with oxygenated water via an intratumoral (IT) and/or intraperitoneal (IP) route and/or exosome (TEX). Oxygenation via the IT+IP route was more efficient than oxygenation via the IT or IP route. The efficiency of oxygenation via the two routes along with TEX led to the best therapeutic outcome. Antitumor immune responses directed by TEX became optimized when systemic (IP) and local (IT) oxygenation was applied compared to administration of TEX alone. Results demonstrated a significant reduction in tumor size and the highest levels of IFN-γ and IL-17 and the lowest levels of IL-4 FoxP3, HIF-1α, VEGF, MMP-2, and MMP-9 in the IT+IP+TEX-treated group. Oxygenated water on the one hand could reduce tumor size, hypoxia, angiogenesis, and metastasis in the tumor microenvironment and on the other hand increases the effective immune response against the tumor systemically. This therapeutic approach is proposed as a new strategy for devising vaccines in a personalized approach.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Exossomos/metabolismo , Imunidade/imunologia , Imunoterapia/métodos , Água/química , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microambiente Tumoral
9.
Asian Pac J Cancer Prev ; 22(3): 893-902, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773555

RESUMO

BACKGROUND AND OBJECTIVES: Despite promising successes in developing new drugs and pharmaceutical biotechnology, infectious diseases and cancer are still the principal causes of mortality and morbidity globally. Therefore, finding effective ways to deal with these pathogens and cancers is critical. Metal nanoparticles are one of the new strategies to combat bacteria and cancers. METHODS: We examined the antimicrobial activity of 30 and 60 nm copper oxide nanoparticles (CuO-NPs) against Acinetobacter baumannii and Staphylococcus epidermidis bacteria responsible for nosocomial infections in standard and clinical strains and anti-cancer activity against 4T1 cell line as malignancy breast cancer cells. Synthesis of CuO-NPs was performed by a one-step reduction method and confirmed by DLS and TEM microscopy at 30 and 60 nm sizes. The antibacterial and anti-cancer activities of the nanoparticles were then investigated against the aforementioned bacteria and breast cancer. RESULTS: Using disk, well, MIC, MBC methods, and viability/bacterial growth assay, 30 nm CuO NPs were found to have more antibacterial activity on standard and clinical strains than 60 nm CuO NPs. On the other hand, using MTT, apoptosis, and gene expression method, 30 nm nanoparticles were found to have more anti-cancer potential than 60 nm CuO NPs. CONCLUSIONS: Our findings implicate CuO-NPs to possess antimicrobial and anti-cancer effects and more significant potential in smaller sizes, suggesting their pharmaceutical and biomedical capacity.
.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Cobre/farmacologia , Infecção Hospitalar/microbiologia , Nanopartículas Metálicas , Tamanho da Partícula , Staphylococcus epidermidis/efeitos dos fármacos , Infecções por Acinetobacter , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Expressão Gênica/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Infecções Estafilocócicas
11.
J Cell Physiol ; 236(2): 1494-1514, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32740942

RESUMO

Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. On one side, ROS can be oncogenic by promoting hypoxic conditions, genomic instability and tumorigenesis. Conversely, elevated levels of ROS-induced oxidative stress can induce cancer cell death. This is evidenced by the conflicting results of research using antioxidant therapy, which in some cases promoted tumour growth and metastasis. However, some antioxidative or ROS-mediated oxidative therapies have also yielded beneficial effects. To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, hydrogen peroxide (H2 O2 ; 10-1,000 µM) was used as an ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle. Our result indicated that the treatment of cancer cells with H2 O2 + HA was significantly more effective than H2 O2 alone. In addition, treatment with H2 O2 + HA led to increased apoptosis, decreased proliferation, and multiphase cell cycle arrest in 4T1 cells in a dose-dependent manner under normoxic or hypoxic conditions. As a result, migratory tendency and the messenger RNA levels of vascular endothelial growth factor, matrix metalloproteinase-2 (MMP-2), and MMP-9 were significantly decreased in 4T1 cells. Of note, HA treatment combined with 100-1,000 µM H2 O2 caused more damage to MNCs as compared to treatment with lower concentrations (10-50 µM). Based on these results, we propose to administer high-dose H2 O2 + HA (100-1000 µM) for intratumoural injection and low doses for systemic administration. Intratumoural route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.


Assuntos
Antioxidantes/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ácido Hialurônico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/química
12.
Int Immunopharmacol ; 84: 106602, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32417655

RESUMO

OBJECTIVES: Mesenchymal stem cells (MSCs) can influence immune effector cells. It is proved that MSCs respond to various Toll-like receptor (TLR) ligands, which could ultimately result in changes in their immunomodulatory effects. Neutrophils play an essential role in the first line defense system and their function can be regulated by MSCs. Estrogen is a female hormone that contributes to sex differences in several immune-related diseases. With regard to the stated facts, this research aims to elucidate the effects of estrogen treatment on the ability of TLR4-primed MSCs to regulate neutrophil functions. METHODS: Following isolation and characterization, MSCs were stimulated with LPS as a TLR4 ligand and subsequently incubated with different concentrations (0, 10, 20 and 40 nM) of estrogen for 48 hrs. Then, MSCs were co-cultured with neutrophils to investigate the vitality and function of the co-cultured neutrophils. RESULTS: Our results indicated that TLR4-primed MSCs could decrease the viability and neutral red uptake potential of co-cultured neutrophils. Furthermore, neutrophils co-cultured with TLR4-primed MSCs exhibited a decrease in the respiratory burst intensity after being challenged with opsonized yeast. Interestingly, treating TLR4-primed MSCs with estrogen reversed the observed alterations in neutrophil functions. CONCLUSION: It appears that estrogen can alter the interaction between MSCs and neutrophils.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Adipogenia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Lipopolissacarídeos/farmacologia , Masculino , Osteogênese , Ratos Wistar
13.
Oxid Med Cell Longev ; 2020: 8681349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33456676

RESUMO

Maintaining homeostasis of ion concentrations is critical in cancer cells. Under hypoxia, the levels of channels and pumps in cancer cells are more active than normal cells suggesting ion channels as a suitable therapeutic target. One of the contemporary ways for cancer therapy is oxidative stress. However, the effective concentration of oxidative stress on tumor cells has been reported to be toxic for normal cells as well. In this study, we benefited from the modifying effects of hyaluronic acid (HA) on H2O2, as a free radical source, to make a gradual release of oxidative stress on cancer cells while preventing/decreasing damage to normal cells under normoxia and hypoxic conditions. To do so, we initially investigated the optimal concentration of HA antioxidant capacity by the DPPH test. In the next step, we found optimum H2O2 dose by treating the 4T1 breast cancer cell line with increasing concentrations (0, 10, 20, 50,100, 200, 500, and 1000 µM) of H2O2 alone or H2O2 + HA (83%) for 24 hrs. The calcium channel and the sodium-potassium pumps were then evaluated by measuring the levels of calcium, sodium, and potassium ions using an atomic absorption flame spectrophotometer. The results revealed that treatment with H2O2 or H2O2+ HA led to an intracellular increase of calcium, sodium, and potassium in the normoxic and hypoxic circumstances in a dose-dependent manner. It is noteworthy that H2O2 + HA treatment had more favorable and controllable effects compared with H2O2 alone. Moreover, HA optimizes the antitumor effect of oxidative stress exerted by H2O2 making H2O2 + HA suitable for clinical use in cancer treatment along with chemotherapy.


Assuntos
Neoplasias da Mama/metabolismo , Canais de Cálcio/metabolismo , Ácido Hialurônico/farmacologia , Peróxido de Hidrogênio/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Compostos de Bifenilo/química , Neoplasias da Mama/patologia , Cálcio/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Camundongos , Picratos/química , Potássio/metabolismo , Sódio/metabolismo
14.
Afr Health Sci ; 20(3): 1452-1462, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33402994

RESUMO

BACKGROUND AND OBJECTIVE: Chronic inflammation is the typical sign of gastritis that may shift into gastric cancer. IL-17A and IL-17F as a novel inflammatory cytokines subset of CD4+Th play the main role in inflammation. A key cytokine receptor in the inflammatory IL-17/IL-23 axis, the interleukin 23 receptor (IL23R), may be related to gastritis. We evaluated the correspondence between IL-17A G197A, IL-17F A7488G and IL23R+2199 A/C polymorphisms with TGF-ß1, IL-6, IL-17, IL-21 and IL-23 mucosal mRNAs expression in uninfected H. Pylori (HP) chronic gastritis patients. MATERIALS AND METHODS: Total RNA and genomic DNA were separated from gastric biopsies of 44 patients with gastritis. Subsequently, mucosal mRNAs expression of TGF-ß1, IL-6, IL-17, IL-21 and IL-23 were assessed by real-time PCR. To polymorphisms determination of IL-17A G197A, IL-17F A7488G and IL-23R +2199A/C the PCR-RFLP was used in gastric biopsies. RESULTS: Results point that IL-17A G197A, IL-17F A7488G and IL23R +2199A/C polymorphisms did not influence the mucosal expression of TGF-ß1, IL-6, IL-17 and IL-21 (p> 0.05). In an opposite result, we don't find a correspondence between IL-17A G197A, IL-17F A7488G polymorphisms and mucosal expression of IL-23 (p> 0.05). In a contrary, we found a correlation between IL23R +2199A/C polymorphism and mucosal expression of IL-23 in patients with chronic gastritis (p< 0.05). CONCLUSION: These findings propose that IL23R +2199A/C polymorphism may change the mucosal expression of IL-23 pattern in patients with gastritis disease in the absence of HP, but to support the conclusion, more research may be required.


Assuntos
Citocinas/genética , Mucosa Gástrica/metabolismo , Gastrite/microbiologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , Interleucina-17/genética , Interleucina-23/genética , Polimorfismo Genético/genética , Adulto , Citocinas/análise , Feminino , Gastrite/metabolismo , Gastrite/patologia , Humanos , Masculino , Pessoa de Meia-Idade
15.
Asian Pac J Cancer Prev ; 19(10): 2821-2829, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30361551

RESUMO

Background: Due to the possible biomedical potential of nanoparticles, titanium dioxide nanoparticles (TiO2 NPs) have received great attention in cancer research. Although selectivity of cytotoxicity with TiO2 NPs in various cells is clinically significant comparisons of cancer and non-cancer cells have been limited. Therefore, we here studied exposure to TiO2 NPs in colorectal cancer cells (CRCs) and human umbilical vein endothelial cells (HUVECs). Methods: After characterization of TiO2 NPs, culture and treatment of cells (HCT116, HT29 and HUVEC), viability was assessed by MTT assay and in terms of morphological features. Acridine orange (AO) and propidium iodide (PI) assays were carried out to estimate the incidence of apoptosis. The RT-PCR method was also employed to evaluate the expression of P53, Bax, Bcl-2 and Caspase 3. Results: Exposure to increasing concentrations of TiO2 NPs enhanced overall cell survival of HCT116 cells and reduced the Bcl-2 and Caspase 3 expression while the ratio of Bax/Bcl-2 was down-regulated. TiO2 NPs at 400 and 50 µg/ml concentrations suppressed cell proliferation and induced apoptosis of HT29 cells and also up-regulated P53 and Bax at the mRNA level, enhanced the Bax/Bcl-2 ratio and eventually up-regulated Caspase 3 mRNA. Although, inhibition of cell proliferation in HUVECs was seen at 200 and 400 µg/ml TiO2 NPs, it was not marked. Conclusion: TiO2 NPs have selective bio-effects on exposed cells with dose- and cell-dependent influence on viability. Cell proliferation in HCT116 as a metastatic colorectal cancer cell line appeared to be stimulated via multiple signaling pathways, with promotion of apoptosis in less metastatic cells at 50 and 400 µg/ml concentrations. This was associated with elevated P53, Bax and Caspase 3 mRNA and reduced Bcl-2 expression. However, TiO2 NPs did not exert any apparent significant effects on HUVECs as hyperproliferative angiogenic cells.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Titânio/farmacologia , Veias Umbilicais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Células Endoteliais/metabolismo , Células HCT116 , Células HT29 , Células Endoteliais da Veia Umbilical Humana , Humanos , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Veias Umbilicais/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
16.
Adv Clin Exp Med ; 27(4): 463-468, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29943521

RESUMO

BACKGROUND: It has been shown that mesenchymal stem cells (MSCs) express all four adenosine receptors' subtypes, and stimulation of these receptors plays an active role in bone marrow-derived mesenchymal stem cell proliferation and differentiation. The interaction between MSCs and immunocytes, such as neutrophils, has been investigated in some recent studies. OBJECTIVES: This study was carried out to investigate the effects of caffeine as an adenosine antagonist on the effects of bone marrow-derived MSCs on neutrophils. MATERIAL AND METHODS: Mesenchymal stem cells were isolated from the bone marrow of rats and pulsed with different concentrations of caffeine (0.1, 0.5 and 1 mM) at different times (24, 48 and 72 h). Mesenchymal stem cells were co-cultured with neutrophils for 4 h and the functions of neutrophils were evaluated. RESULTS: The findings showed that MSCs pulsed with caffeine at low to moderate concentrations preserved the neutral red uptake by neutrophils and established the MSCs' ability to protect neutrophils from apoptosis. Mesenchymal stem cells treated with caffeine increased the phagocytosis of neutrophils and simultaneously diminished the production of potentially harmful reactive oxygen substances, more profound than MSCs without treatment. Nevertheless, a high concentration of caffeine could interfere with some aspects of the crosstalk between MSCs and neutrophils. CONCLUSIONS: These findings may offer new insight into the potential mechanisms underlying the immunomodulatory effects of caffeine.


Assuntos
Medula Óssea/fisiologia , Cafeína/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neutrófilos/fisiologia , Animais , Medula Óssea/efeitos dos fármacos , Células da Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Células-Tronco Mesenquimais/fisiologia , Neutrófilos/efeitos dos fármacos , Ratos
17.
Life Sci ; 199: 41-47, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29518399

RESUMO

PURPOSE: Mesenchymal stem cells (MSCs) express some of the nicotinic receptor subunits and adenosine receptors. The communication between tissue MSCs with neutrophils has been shown in previous studies. The aim of the present study is to determine the role of nicotine or caffeine on MSCs and its effects on neutrophils. METHODS: After the isolation, MSCs were pulsed with LPS (10 ng/ml) for 1 h. Then, MSCs were incubated with different concentrations of caffeine (0.1, 0.5 and 1 mM) and or with different concentrations of nicotine (0.1, 0.5, and 1 µM) for 48 h. Afterwards, the medium was aspirated and the cells were used for co-culture experiment with neutrophil. The obtained data showed that LPS primed MSCs could decrease neutrophil vitality, whereas the treatment of MSCs with nicotine and/or especially a treatment with caffeine reverse this effect. RESULTS: Obtained data showed that when the LPS-primed MSCs were treated with nicotine or caffeine, the vitality of co-cultured neutrophils was significantly increased. The rate of the respiratory burst of neutrophils after co-culture by LPS-primed MSCs was decreased compared to the respiratory burst of neutrophil alone. Nicotine and/or caffeine treatment could reverse this reduction. CONCLUSION: Generally, these findings provide a new insight into understanding the anti-inflammatory and immunomodulatory effects of nicotine and caffeine.


Assuntos
Cafeína/farmacologia , Lipopolissacarídeos/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Nicotina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Fatores Imunológicos/farmacologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Neutrófilos/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA