Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(6): e202300696, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38146865

RESUMO

Pt(II) and Pd(II) coordinating N-donor ligands have been extensively studied as anticancer agents after the success of cisplatin. In this work, a novel bidentate N-donor ligand, the N-[[4-(phenylmethoxy)phenyl]methyl]-2-pyridinemethanamine, was designed to explore the antiparasitic, antiviral and antitumor activity of its Pt(II) and Pd(II) complexes. Chemical and spectroscopic characterization confirm the formation of [MLCl2 ] complexes, where M=Pt(II) and Pd(II). Single crystal X-ray diffraction confirmed a square-planar geometry for the Pd(II) complex. Spectroscopic characterization of the Pt(II) complex suggests a similar structure. 1 H NMR, 195 Pt NMR and HR-ESI-MS(+) analysis of DMSO solution of complexes indicated that both compounds exchange the chloride trans to the pyridine for a solvent molecule with different reaction rates. The ligand and the two complexes were tested for in vitro antitumoral, antileishmanial, and antiviral activity. The Pt(II) complex resulted in a GI50 of 10.5 µM against the NCI/ADR-RES (multidrug-resistant ovarian carcinoma) cell line. The ligand and the Pd(II) complex showed good anti-SARS-CoV-2 activity with around 65 % reduction in viral replication at a concentration of 50 µM.


Assuntos
Antineoplásicos , Complexos de Coordenação , Platina/farmacologia , Platina/química , Ligantes , Cisplatino , Antineoplásicos/farmacologia , Antineoplásicos/química , Antivirais/farmacologia , Paládio/farmacologia , Paládio/química , Cristalografia por Raios X , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Linhagem Celular Tumoral
2.
Metallomics ; 14(8)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894863

RESUMO

Herein a systematic series of four [AuLL']n+ n = 0, +1 complexes, where L = 1,3-bis(mesityl)imidazole-2-ylidene (IMes), or triphenylphosphine (PPh3), and L' = chloride, or 4-dimethylaminopyridine (DMAP), had their in vitro antiviral activity assessed against Chikungunya virus (CHIKV). The PPh3 derivatives inhibited viral replication by 99%, whereas the IMes derivatives about 50%. The lipophilicity of the PPh3 derivatives is higher than the IMes-bearing compounds, which can be related to their more prominent antiviral activities. The dissociation of DMAP is faster than chloride in solution for both IMes and PPh3 derivatives; however, it does not significantly affect their in vitro activities, showing a higher dependence on the nature of L rather than L' towards their antiviral effects. All complexes bind to N-acetyl-L-cysteine, with the Ph3P-bearing complexes coordinating at a faster rate to this amino acid. The binding constants to bovine serum albumin are in the order of 104, slightly higher for the DMAP complexes in both PPh3 and IMes derivatives. Mechanistic investigations of the PPh3 complexes showed a ubiquitous protective effect of the compounds in the pretreatment, early stages, and post-entry assays. The most significant inhibition was observed in post-entry activity, in which the complexes blocked viral replication in 99%, followed by up to 95% inhibition of the early stages of infection. Pretreatment assays showed a 92% and 80% replication decrease for the chloride and DMAP derivatives, respectively. dsRNA binding assays showed a significant interaction of the compounds with dsRNA, an essential biomolecule to viral replication.


Assuntos
Vírus Chikungunya , Antivirais/farmacologia , Vírus Chikungunya/genética , Cloretos/farmacologia , Ouro/farmacologia , Compostos Organofosforados
3.
Pharmaceutics ; 14(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214194

RESUMO

Oxidative stress and inflammation act on skin squamous cell carcinoma (SSCC) development and progression. Curative therapy for SSCC patients is mainly based on surgical resection, which can cause various sequelae. Silver ions have in vitro activities over tumor cells, while nimesulide has antioxidant and anti-inflammatory activities. This study aimed to evaluate the effects of a silver(I) complex with nimesulide (AgNMS) incorporated in a sustained release device based on bacterial cellulose membrane, named AgNMS@BCM, on topic SSCC treatment. The antiproliferative effect of AgNMS complex was evaluated in the SCC4, SCC15 and FaDu SCC lines. AgNMS complex activity on exposure of phosphatidylserine (PS) residues and multicaspase activation were evaluated on FaDu cells by flow cytometry. The AgNMS@BCM effects were evaluated in a SSCC model induced by 7,12-dimethylbenzanthracene/12-o-tetradecanoyl-phorbol-13-acetate (DMBA/TPA) in mice. Toxicity and tumor size were evaluated throughout the study. AgNMS complex showed antiproliferative activity in SCC15 and FaDu lines in low to moderate concentrations (67.3 µM and 107.3 µM, respectively), and induced multicaspase activation on FaDu cells. The AgNMS@BCM did not induce toxicity and reduced tumor size up to 100%. Thus, the application of AgNMS@BCM was effective and safe in SSCC treatment in mice, and can be seen as a potential and safe agent for topic treatment of SSCC in humans.

4.
J Inorg Biochem ; 229: 111726, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065320

RESUMO

Leishmania amazonensis and L. braziliensis are the main etiological agents of the American Tegumentary Leishmaniasis (ATL). Taking into account the limited effectiveness and high toxicity of the current drug arsenal to treat ATL, novel options are urgently needed. Inspired by the fact that gold-based compounds are promising candidates for antileishmanial drugs, we studied the biological action of a systematic series of six (1)-(6) symmetric Au(I) benzyl and aryl-N-heterocyclic carbenes. All compounds were active at low micromolar concentrations with 50% effective concentrations ranging from 1.57 to 8.30 µM against Leishmania promastigotes. The mesityl derivative (3) proved to be the best candidate from this series, with a selectivity index ~13 against both species. The results suggest an effect of the steric and electronic parameters of the N-substituent in the activity. Intracellular infections were drastically reduced after 24h of (2)-(5) incubation in terms of infection rate and amastigote burden. Further investigations showed that our compounds induced significant parasites' morphological alterations and membrane permeability. Also, (3) and (6) were able to reduce the residual activity of three Leishmania recombinant cysteine proteases, known as possible targets for Au(I) complexes. Our promising results open the possibility of exploring gold complexes as leishmanicidal molecules to be further screened in in vivo models of infection.


Assuntos
Imidazóis/farmacologia , Compostos Organoáuricos/farmacologia , Tripanossomicidas/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Feminino , Ouro/química , Imidazóis/síntese química , Leishmania braziliensis/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Compostos Organoáuricos/síntese química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química
5.
ChemMedChem ; 16(11): 1681-1695, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33615725

RESUMO

Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.


Assuntos
Antiprotozoários/farmacologia , Descoberta de Drogas , Glutationa/análogos & derivados , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Compostos Organoáuricos/farmacologia , Espermidina/análogos & derivados , Animais , Antiprotozoários/química , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Humanos , Leishmania/metabolismo , Leishmaniose/metabolismo , Compostos Organoáuricos/química , Oxirredução , Testes de Sensibilidade Parasitária , Espermidina/antagonistas & inibidores , Espermidina/metabolismo
6.
Dalton Trans ; 49(45): 16143-16153, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32239007

RESUMO

Cobalt complexes have been demonstrated to target zinc fingers, as shown by investigations of Doxovir, the trade name of the [CoIII(acacen)(2-Me-Imz)2]+ drug in clinical trials. Mechanistic studies indicate zinc finger disruption by metal coordination to His residues. Other than Doxovir, a few studies have investigated other ligands and geometries for cobalt complexes for zinc finger targeting. Tripod ligands demonstrated good zinc and cobalt chelation. In this manuscript, we report the ability of CoII and CoIII complexes of tri(2-pyridylmethyl)amine and N,N-di(2-pyridylmethyl)glycinate to disrupt zinc fingers. The results obtained by mass spectrometry and X-ray absorption spectroscopy demonstrate that the complexes were able to remove zinc from the zinc fingers. The product was oxidised apo-peptide. In contrast, the ligands themselves were able to remove zinc, and they did not promote oxidation, resulting in free Cys residues. Cobalt finger adducts were not detected for the complexes with tripod ligands unless they were coordinated to planar ligands such as salen or acacen. Studies of the interactions of cobalt complexes with amino acids demonstrated that tripod ligands promote the cysteine reaction, while the salen ligands promote histidine coordination, demonstrating a different mechanism of action. The results reported here are significant for better understanding and further design of zinc finger targeting compounds.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Dedos de Zinco , Aminas/química , Ligantes , Modelos Moleculares
7.
Sci Rep ; 8(1): 8290, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844457

RESUMO

The increase of Zika virus (ZIKV) infections in Brazil in the last two years leaves a prophylactic measures on alert for this new and emerging pathogen. Concerning of our positive experience, we developed a new prototype using Neisseria meningitidis outer membrane vesicles (OMV) on ZIKV cell growth in a fusion of OMV in the envelope of virus particles. The fusion of nanoparticles resulting from outer membrane vesicles of N. meningitidis with infected C6/36 cells line were analyzed by Nano tracking analysis (NTA), zeta potential, differential light scattering (DLS), scan and scanning transmission eletronic microscopy (SEM and STEM) and high resolution mass spectometry (HRMS) for nanostructure characterization. Also, the vaccination effects were viewed by immune response in mice protocols immunization (ELISA and inflammatory chemokines) confirmed by Zika virus soroneutralization test. The results of immunizations in mice showed that antibody production had a titer greater than 1:160 as compared to unvaccinated mice. The immune response of the adjuvant and non-adjuvant formulation activated the cellular immune response TH1 and TH2. In addition, the serum neutralization was able to prevent infection of virus particles in the glial tumor cell model (M059J). This research shows efficient strategies without recombinant technology or DNA vaccines.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas de DNA/imunologia , Infecção por Zika virus/prevenção & controle , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos , Brasil , Linhagem Celular , Humanos , Imunização/métodos , Camundongos , Nanoestruturas , Neisseria meningitidis/imunologia , Neisseria meningitidis/fisiologia , Vacinas de DNA/farmacologia , Zika virus/imunologia , Infecção por Zika virus/imunologia
8.
Inorg Chem ; 52(19): 11280-7, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24063530

RESUMO

The syntheses and the characterization by chemical analysis, (1)H and (31)P NMR spectroscopy, and mass spectrometry of a series of linear triphenylphosphine gold(I) complexes with substituted N-heterocycle ligands (L), [(PPh3)Au(I)(L)](+), is reported. The reaction of [(PPh3)Au(L)](+) (L = Cl(-) or substituted N- heterocyclic pyridine) with the C-terminal (Cys3His) finger of HIVNCp7 shows evidence by mass spectrometry (ESI-MS) and (31)P NMR spectroscopy of a long-lived {(PPh3)Au}-S-peptide species resulting from displacement of the chloride or pyridine ligand by zinc-bound cysteine with concomitant displacement of Zn(2+). In contrast, reactions with the Cys2His2 finger-3 of the Sp1 transcription factor shows significantly reduced intensities of {(PPh3)Au} adducts. The results suggest the possibility of systematic (electronic, steric) variations of "carrier" group PR3 and "leaving" group L as well as the nature of the zinc finger in modulation of biological activity. The cytotoxicity, cell cycle signaling effects, and cellular accumulation of the series are also reported. All compounds display cytotoxicity in the micromolar range upon 96 h continuous exposure to human tumor cells. The results may have relevance for the reported inhibition of viral load in simian virus by the gold(I) drug auranofin.


Assuntos
Ouro/química , Compostos Heterocíclicos/química , Fosfinas/química , Dedos de Zinco , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Ouro/farmacologia , Compostos Heterocíclicos/farmacologia , Humanos , Concentração Inibidora 50 , Ligantes , Espectroscopia de Ressonância Magnética , Fosfinas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA