Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432630

RESUMO

The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.


Assuntos
NADPH Oxidase 2 , Família de Proteínas da Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sítios de Ligação
2.
Arterioscler Thromb Vasc Biol ; 44(5): e145-e167, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482696

RESUMO

BACKGROUND: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS: Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS: Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.


Assuntos
Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-fos , Transcriptoma , Proteínas rho de Ligação ao GTP , Animais , Humanos , Camundongos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/genética , Fenótipo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Transdução de Sinais , Análise de Célula Única , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética
3.
Am J Physiol Cell Physiol ; 319(6): C1045-C1058, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052069

RESUMO

Lymphangiogenesis, or formation of new lymphatic vessels, is a tightly regulated process that is controlled by growth factor signaling and biomechanical cues. Lymphatic endothelial cells (LECs) undergo remodeling, migration, and proliferation to invade the surrounding extracellular matrix (ECM) during both physiological and pathological lymphangiogenesis. This study optimized conditions for an in vitro three-dimensional (3-D) collagen-based model that induced LEC invasion and recapitulated physiological formation of lymphatic capillaries with lumens. Invasion of LECs was enhanced in the presence of sphingosine 1-phosphate (S1P). Effects of various known lymphangiogenic factors, vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor (bFGF), interleukin (IL)-8, and hepatocyte growth factor (HGF), were tested on LEC sprout formation synergistically with VEGF-C. Several of these growth factors significantly enhanced LEC invasion, and synergistic effects of some of these further enhanced the sprouting density and lumen volume. To determine the contribution of specific ECM components, we analyzed the expression of different integrin subunits. Basal expressions of the integrin α5- and integrin ß1-subunits were high in LECs. The addition of fibronectin, which mediates cellular responses through these integrins, enhanced LEC sprouting density and sprout length dose-dependently. siRNA-mediated knockdown of the integrin ß1-subunit suppressed LEC invasion and also inhibited VEGF receptor (VEGFR)3 and ERK activation. Furthermore, exposing LECs to the inflammatory mediator lipopolysaccharide (LPS) inhibited sprouting. This optimized model for LEC invasion includes S1P, VEGF-C, and fibronectin within a 3-D collagen matrix, along with VEGF-C, VEGF-A, bFGF, and HGF in the culture medium, and provides a useful tool to investigate the functional effect of various lymphangiogenic factors and inhibitors.


Assuntos
Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Linfangiogênese/fisiologia , Vasos Linfáticos/citologia , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibronectinas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Integrina beta1/genética , Interleucina-8/metabolismo , Lipopolissacarídeos , Lisofosfolipídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
J Am Heart Assoc ; 8(22): e013673, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31698979

RESUMO

Background We recently discovered a small endogenous peptide, peptide Lv, with the ability to activate vascular endothelial growth factor receptor 2 and its downstream signaling. As vascular endothelial growth factor through vascular endothelial growth factor receptor 2 contributes to normal development, vasodilation, angiogenesis, and pathogenesis of various diseases, we investigated the role of peptide Lv in vasodilation and developmental and pathological angiogenesis in this study. Methods and Results The endothelial cell proliferation, migration, and 3-dimensional sprouting assays were used to test the abilities of peptide Lv in angiogenesis in vitro. The chick chorioallantoic membranes and early postnatal mice were used to examine its impact on developmental angiogenesis. The oxygen-induced retinopathy and laser-induced choroidal neovascularization mouse models were used for in vivo pathological angiogenesis. The isolated porcine retinal and coronary arterioles were used for vasodilation assays. Peptide Lv elicited angiogenesis in vitro and in vivo. Peptide Lv and vascular endothelial growth factor acted synergistically in promoting endothelial cell proliferation. Peptide Lv-elicited vasodilation was not completely dependent on nitric oxide, indicating that peptide Lv had vascular endothelial growth factor receptor 2/nitric oxide-independent targets. An antibody against peptide Lv, anti-Lv, dampened vascular endothelial growth factor-elicited endothelial proliferation and laser-induced vascular leakage and choroidal neovascularization. While the pathological angiogenesis in mouse eyes with oxygen-induced retinopathy was enhanced by exogenous peptide Lv, anti-Lv dampened this process. Furthermore, deletion of peptide Lv in mice significantly decreased pathological neovascularization compared with their wild-type littermates. Conclusions These results demonstrate that peptide Lv plays a significant role in pathological angiogenesis but may be less critical during development. Peptide Lv is involved in pathological angiogenesis through vascular endothelial growth factor receptor 2-dependent and -independent pathways. As anti-Lv dampened the pathological angiogenesis in the eye, anti-Lv may have a therapeutic potential to treat pathological angiogenesis.


Assuntos
Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Membrana Corioalantoide/efeitos dos fármacos , Neovascularização Patológica/genética , Peptídeos/genética , Peptídeos/farmacologia , Vasos Retinianos/efeitos dos fármacos , Animais , Arteríolas/efeitos dos fármacos , Ensaios de Migração Celular , Proliferação de Células/genética , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Vasos Coronários/efeitos dos fármacos , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Cães , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Artéria Retiniana/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sus scrofa , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Mol Hum Reprod ; 24(2): 74-93, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329415

RESUMO

STUDY QUESTION: Can primary human uterine microvascular endothelial cells (UtMVECs) be used as a model to study uterine angiogenic responses in vitro that are relevant in pregnancy? SUMMARY ANSWER: UtMVECs demonstrated angiogenic responses when stimulated with proangiogenic factors, including sphingosine 1-phosphate (S1P), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), physiological levels of wall shear stress (WSS), human chorionic gonadotropin (hCG) and various combinations of estrogen and progesterone. WHAT IS KNOWN ALREADY: During sprouting angiogenesis, signaling from growth factors and cytokines induces a monolayer of quiescent endothelial cells (ECs) lining the vasculature to degrade the extracellular matrix and invade the surrounding tissue to form new capillaries. During pregnancy and the female reproductive cycle, the uterine endothelium becomes activated and undergoes sprouting angiogenesis to increase the size and number of blood vessels in the endometrium. STUDY DESIGN, SIZE, DURATION: The study was designed to examine the angiogenic potential of primary human UtMVECs using the well-characterized human umbilical vein EC (HUVEC) line as a control to compare angiogenic potential. ECs were seeded onto three-dimensional (3D) collagen matrices, supplemented with known proangiogenic stimuli relevant to pregnancy and allowed to invade for 24 h. Sprouting responses were analyzed using manual and automated methods for quantification. PARTICIPANTS/MATERIALS, SETTING, METHODS: RT-PCR, Western blot analysis and immunostaining were used to characterize UtMVECs. Angiogenic responses were examined using 3D invasion assays. Western blotting was used to confirm signaling responses after proangiogenic lipid, pharmacological inhibitor, and recombinant lentiviral treatments. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE: After ensuring that UtMVECs expressed the proper endothelial markers, we found that UtMVECs invade 3D collagen matrices dose-dependently in response to known proangiogenic stimuli (e.g. S1P, VEGF, bFGF, hCG, estrogen, progesterone and WSS) present during early pregnancy. Invasion responses were positively correlated with phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p42/p44 mitogen-activated protein kinase (ERK). Inhibition of these second messengers significantly impaired sprouting (P < 0.01). Gene silencing of membrane type 1-matrix metalloproteinase using multiple approaches completely abrogated sprouting (P < 0.001). Finally, UtMVECs displayed a unique ability to undergo sprouting in response to hCG, and combined estrogen and progesterone treatment. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: The study of uterine angiogenesis in vitro has limitations and any findings many not fully represent the in vivo state. However, these experiments do provide evidence for the ability of UtMVECs to be used in functional sprouting assays in a 3D environment, stimulated by physiological factors that are produced locally within the uterus during early pregnancy. WIDER IMPLICATIONS OF THE FINDINGS: We show that UtMVECs can be used reliably to investigate how growth factors, hormones, lipids and other factors, such as flow, affect angiogenesis in the uterus. STUDY FUNDING/COMPETING INTERESTS: This work was supported by NIH award HL095786 to K.J.B. The authors have no conflicts of interest.


Assuntos
Útero/efeitos dos fármacos , Útero/metabolismo , Gonadotropina Coriônica , Estrogênios/farmacologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lisofosfolipídeos/farmacologia , Gravidez , Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
6.
J Biol Chem ; 288(42): 30720-30733, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24005669

RESUMO

Angiogenesis is critical for many physiological and pathological processes. To identify molecules relevant to angiogenesis, we performed a proteomic screen comparing invading versus non-invading endothelial cells in three-dimensional collagen matrices. We found up-regulated levels of receptor for activated C kinase 1 (RACK1) and the intermediate filament protein vimentin that correlated with increased endothelial cell invasion. Because both RACK1 and vimentin have been linked to focal adhesion kinase (FAK), we investigated whether this pathway regulated invasion. RACK1 depletion reduced invasion responses, and this was associated with attenuated activation of FAK. Knockdown of vimentin significantly decreased levels of phosphorylated and total FAK. Treatment with a pharmacological inhibitor of FAK dose-dependently reduced invasion, indicating a crucial role for FAK activity during invasion. Because RACK1 and vimentin were both up-regulated with sphingosine 1-phosphate treatment, required for invasion, and regulated FAK, we tested whether they complexed together. RACK1 complexed with vimentin, and growth factors enhanced this interaction. In addition, RACK1, vimentin, and FAK formed an intermolecular complex in invading endothelial cultures in three dimensions in response to stimulation by sphingosine 1-phosphate and growth factors. Moreover, depletion of RACK1 decreased the association of vimentin and FAK, suggesting that RACK1 was required for stabilizing vimentin-FAK interactions during sprouting. Silencing of vimentin and RACK1 decreased cell adhesion and focal contact formation. Taken together, these results demonstrate that proangiogenic signals converge to enhance expression and association of RACK1 and vimentin, which regulated FAK, resulting in successful endothelial sprout formation in three-dimensional collagen matrices.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Fisiológica/fisiologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Vimentina/metabolismo , Colágeno/genética , Colágeno/metabolismo , Ativação Enzimática/fisiologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Quinase 1 de Adesão Focal/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Complexos Multiproteicos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estabilidade Proteica , Proteômica , Receptores de Quinase C Ativada , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo , Regulação para Cima/fisiologia , Vimentina/genética
7.
Biol Reprod ; 74(2): 383-94, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16251498

RESUMO

During early pregnancy in ruminants, progesterone (P4) from the corpus luteum and interferon tau (IFNT) from the conceptus act on the endometrium to regulate genes important for uterine receptivity and conceptus growth. The use of the uterine gland knockout (UGKO) ewe has demonstrated the critical role of epithelial secretions in regulation of conceptus survival and growth. A custom ovine cDNA array was used to identify alterations in gene expression of endometria from Day 14 cyclic, pregnant, and UGKO ewes (study 1) and from cyclic ewes treated with P4 or P4 with ZK 136,317 antiprogestin and control proteins or IFNT (study 2). In study 1, expression of 47 genes was more than 2-fold different between Day 14 pregnant and cyclic endometria, whereas 23 genes was different between Day 14 cyclic and UGKO endometria. In study 2, 70 genes were different due to P4 alone, 74 genes were affected by IFNT in a P4-dependent manner, and 180 genes were regulated by IFNT in a P4-independent manner. In each study, an approximately equal number of genes were found to be activated or repressed in each group. Endometrial genes increased by pregnancy and P4 and/or IFNT include B2M, CTSL, CXCL10, G1P3, GRP, IFI27, IFIT1, IFITM3, LGALS15, MX1, POSTN, RSAD2, and STAT5A. Transcripts decreased by pregnancy and P4 and/or IFNT include COL3A1, LUM, PTMA, PUM1, RPL9, SPARC, and VIM. Identification and analysis of these hormonally responsive genes will help define endometrial pathways critical for uterine support of peri-implantation conceptus survival, growth, and implantation.


Assuntos
Endométrio/fisiologia , Interferon Tipo I/genética , Proteínas da Gravidez/genética , Prenhez/genética , Progesterona/metabolismo , Animais , Animais Geneticamente Modificados , Endométrio/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Gravidez , Proteínas da Gravidez/metabolismo , Proteínas da Gravidez/farmacologia , Progesterona/farmacologia , Receptores de Progesterona/antagonistas & inibidores , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA