Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 141: 106902, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806048

RESUMO

A comparative study is proposed to show the effect of variation in the heteroatoms in the main skeleton of CQDs proveniences, on their affinity for nucleation of CQDs, as anti-inflammatory and anticancer drugs. Heterocyclic-based CQDs sprout was successfully exploited for preparation of three CQDs proveniences, named as; 2-(2,5-dimethoxyphenyl)-4,6-dioxo-6,11-dihydro-4H-pyrimido[2,1-b] quinazoline-3-carbonitrile (compound A), 2-(2,5-dimethoxyphenyl)-4,6-dioxo-4H,6H-benzo[e]pyrimido[2,1-b][1,3]oxazine-3-carbonitrile (compound S) and 2-(2,5-dimethoxyphenyl)-4,6-dioxo-4H,6H-benzo[e]pyrimido[2,1-b][1,3] thiazine-3-carbonitrile (compound T). Chemical formulas of CQDs proveniences & CQDs were verified via FTIR, 1HNMR, 13CNMR & XRD. Particle size of TM-CQDs, A-CQDs, S-CQDs & T-CQDs were estimated to be 3.7 ± 1.4, 4.6 ± 1.6, 5.9 ± 1.6 nm and 3.0 ± 1.3 nm, respectively. All of CQDs proveniences & CQDs were examined for their affinity as anti-inflammatory drugs via Griess assay. CQDs ingrained from TM (TM-CQDs) were detected with the highest NO inhibition% by increasing its concentration from 10 up to 100 µM to be 40 % to 89 %, respectively. Moreover, their anti-tumor performance against MCF-7: breast Adenocarcinoma cell line was approved via sulforhodamine B assay, whereas, IC50 was evaluated for TM-CQDs, A-CQDs, S-CQDs and T-CQDs to be 38.16, 36.09, 100 and 100 µg/ml, respectively.


Assuntos
Antineoplásicos , Neoplasias da Mama , Tiazinas , Humanos , Feminino , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Pirimidinas
2.
Med Chem ; 18(9): 926-948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35236270

RESUMO

AIMS: The current study aimed to synthesize novel pyrazolo[1,5-a]pyrimidines based on 5- aminopyrazoles 3, evaluate their antimicrobial activity, and study the minimum inhibitory concentration (MIC) for the most active compounds. In addition, molecular docking studies and RNA polymerase inhibitory activity were determined. BACKGROUND: Starting with our previously reported 5-aminopyrazoles 3, a number of novel pyrazolo[1,5- a]pyrimidines were synthesized. Due to the similarity of pyrazolopyrimidine derivatives with the purine systems, pyrazolopyrimidines are important in many different biological applications, most notably as anti-tumor, antibacterial, and hepatitis C virus inhibitors. The pharmaceutical applications of the pyrazolopyrimidine derivatives were explained in several approved drugs like Indiplon, Zaloplan, and Ocinaplon. OBJECTIVE: To prepare a novel antimicrobial agent, namely pyrazolo[1,5-a]pyrimidine, reveal their structures using different spectral data, the minimum inhibitory concentration (MIC) for the most active compounds was evaluated, and both the molecular docking and the RNA polymerase inhibitory activity were determined. METHODS: A number of different pyrazolopyrimidines namely 2-(phenylamino)-6,11-dihydrobenzo[g]pyrazolo [1,5-a]quinazoline-3-carboxamides (5a-c), (E)-5,7-dimethyl-2-(phenylamino)-6-(phenyldiazenyl)pyrazolo-[1,5- a]pyrimidine-3-carboxamides (7a-c), 7-amino-2-(phenylamino) pyrazolo[1,5-a]pyrimidine-3-carboxamides (11af), 7-amino-2-(phenylamino)-5-(2-thienyl)pyrazolo[1,5-a]pyrimidine-3-carboxamides (14-f) and ethyl 7-amino-3- carbamoyl-2-(phenylamino)-5-(4-pyridyl)pyrazolo[1,5-a]pyrimidine-6-carboxylate derivatives (14g-i) were synthesized through the reaction of 5-aminopyrazoles 3 with a variety of chemical reagents. On the other hand, the evaluation of the antimicrobial activity for all the prepared compounds was screened through different strains as Gram-positive bacteria, such as staphylococcus aureus and Streptococcus mutans, and Gram-negative bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and klebsiella. The antifungal activity was determined by Candids Albicans fungal strain, and the MIC of the most active compounds was measured. The molecular docking was recorded, and the RNA polymerase inhibitory activity was estimated for the high docking score compounds. RESULTS: Compounds 5a, 5b, 5c, 7a, 7b, 7c, 11d, 14b, and 14h were the most active compounds against some of the bacterial and fungal tested strains. MIC was determined for the most active tested compounds. As an antimicrobial agent, compound 7b was the most potent, with a high docking score and RNA polymerase inhibitory activity (IC50= 0.213 µg/ml) compared to Rifampicin (IC50= 0.244 µg/ml). The reactivity of the latter compound was attributed to the presence of 4-Br-C6H4 moiety. The results demonstrated that docking studies on the most active compounds in the RNA polymerase active site were consistent with in vitro assays. CONCLUSION: The resultant novel bioactive pyrazolo[1,5-a]pyrimidine derivatives were synthesized based on 5- aminopyrazole derivatives 3. The current study evaluated the antimicrobial activity for all the prepared compounds, followed by the determination of the MIC for the most potent active compounds. The molecular docking study was performed, and it was appropriate with the in vitro activity. The RNA polymerase inhibitory activity was assessed for the most active antimicrobial compounds with a high docking score (7b, 7c, 14a, 14b, 14e, 14i). Compound 7b was the most potent compound inhibiting RNA polymerase enzyme compared to the reference drug Rifampicin. Other: The novel prepared heterocyclic systems are extremely important in a variety of domains, especially biological and pharmacological ones.


Assuntos
Anti-Infecciosos , Rifampina , Antibacterianos , Anti-Infecciosos/farmacologia , Inibidores Enzimáticos/farmacologia , Fungos , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas/química , Relação Estrutura-Atividade
3.
Anticancer Agents Med Chem ; 22(12): 2327-2339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34951581

RESUMO

BACKGROUND: Due to their biological applications, many tetrahydrobenzo[d]thiazole derivatives were considered the most important class of heterocyclic compounds. There are many drugs known in the market containing the thiazole moiety responsible for the high drug activity. OBJECTIVE: This work aimed to produce novel heterocyclic compounds such as pyrazole, isoxazole, thiophene, chromeno[ 7,8-d]thiazole, and thiazolo[4,5-h]quinoline derivatives. The newly synthesized heterocyclic compounds were evaluated against anticancer cell lines followed by c-Met enzymatic activity and tyrosine kinases inhibition for the most active compounds. METHODS: In this work, the 3-phenyl-2-thioxo-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (3) was synthesized through the reaction of cyclohexane-1,3-dione with phenyl isothiocyanate and elemental sulfur. Compound 3 showed interesting activity toward some chemical reagents producing new heterocyclic compounds that can not be obtained another way. The newly synthesized compounds were evaluated towards the six cancer cell lines. The most active compounds were selected and tested toward the c-Met enzyme by taking foretinib as the positive control. Also, the inhibitions toward the PC-3 cell line using the reference SGI-1776 were measured. Finally, the inhibitions towards the five tyrosine kinases were also tested. RESULTS: The synthesized quinoline and chromene derivatives were evaluated toward the c-Met enzyme using foretinib as the positive control. The obtained results showed that twelve compounds exhibited IC50 values less than 1.30 nM. On the other hand, sixteen compounds showed higher inhibitions than the reference SGI-1776 (IC50 4.86 nM) toward the PC-3 cell line. CONCLUSION: Novel, heterocyclic compounds were synthesized with a high impact on biological activities. All synthesized compounds were screened for their anti-proliferative effect, and most of them revealed high potent effects. In addition, the c-Met and prostate cancer cell line PC-3 inhibitions for the most active compounds showed that these compounds exhibited high inhibitions. Anti-proliferative activity of selected compounds toward cancer cell lines classified according to the disease showed that most compounds exhibited high inhibitions.


Assuntos
Antineoplásicos , Quinolinas , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Quinolinas/farmacologia , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tirosina/farmacologia
4.
Acta Chim Slov ; 68(3): 604-616, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34897524

RESUMO

Many novel thiazole derivatives were designed and synthesized using 4-phenylthiazol-2-amine. The reactivity of the latter compound toward different chemical reagents was studied. The structure of the newly synthesized compounds was established based on elemental analysis and spectral data. Furthermore, twenty compounds of the synthesized systems were selected and evaluated in (µM) as significant anticancer agents towards three human cancer cell lines [MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), and SF-268 (CNS cancer)] and normal fibroblasts human cell line (WI-38). The results showed that compounds 9 and 14a displayed higher effeciency than the reference doxorubicin.


Assuntos
Antineoplásicos/farmacologia , Tiazóis/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química
5.
Steroids ; 154: 108527, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31676306

RESUMO

Hetero-steroids, hybrid anticancer agents, have received much interest in view of their numerous and promising biological activities. In this study, a novel class of hetero-steroids were synthesized, analytical and spectral data proved the validity of the novel synthesized steroid derivatives. The cytotoxicity of the synthesized compounds 2, 5, 6, 7, 10, 11, 12, 14, 15, 17 were evaluated using human hepatocellular carcinoma cell lines (HepG2 and Huh-7) and non-small cell lung cancer (A549) cell lines. The synthesized compounds reported a remarkable gradual decrease in the cell viability of the three tested cancer cell lines. It was observed that compounds 2 and 12 had the lowest IC50s and the highest cytotoxic effects against all tested cell lines. As attempt to explain the cytotoxic activity achieved by the tested compounds in the in vitro study, molecular simulation was done to reveal the activity of the tested compounds against four different proteins (CDK2, CYP19, JAK2, and BCL2) which are highly implicated in cancer regulation and progression. We found that compound 2, and 12 were the best docked compounds against all tested receptors, which was indicated by lowest binding energy compared to reference ligand. Interestingly enough, our molecular study was in agreement with the cytotoxic activity. As future prospective, we are recommending further study on compounds 2, and 12 against the four different proteins to prove their mode of action.


Assuntos
Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Esteroides/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Estrutura Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Esteroides/síntese química , Esteroides/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Drug Des Devel Ther ; 12: 1785-1798, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29950813

RESUMO

Background: Over the years, pyrazolopyrimidine derivatives have been recognized as having antimicrobial activities. Recently, we reported different synthetic methods to prepare pyrazolopyrimidine derivatives as anticancer and antimicrobial agents. The studies showed that our previously reported 5-aminopyrazoles 2 act as a building block for the preparation of a variety of interesting pyrazolopyrimidines as purine analogs. Purpose: The objective of this study was to describe the direct new method for preparation of novel pyrazolo[1,5-a]pyrimidine derivatives and their corresponding cycloalkane ring-fused derivatives. Also, the new compounds were tested in vitro for their antibacterial and antifungal activity properties. Methods: Pyrazolo[1,5-a]pyrimidine derivatives were prepared by the reaction of our previously reported 5-aminopyrazoles 2 with suitable sodium salts of (hydroxymethylene) cycloalkanones and sodium salts of unsaturated ketones. Results: The structures of the new compounds were characterized according to their mass spectroscopy, 1H NMR, IR and elemental analyses. Compounds 8b, 10e, 10i, and 10n were the most active compounds against Gram-positive and Gram-negative bacterial species. Compound 10i with two moieties of 4-Br-C6H4 revealed increased reactivity compared with ampicillin as standard reference. Conclusion: About twenty two novel pyrazolo[1,5-a]pyrimidine derivatives and their corresponding cycloalkane ring-fused derivatives were prepared through the reaction of 5-aminopyrazoles 2 with different sodium salts of (hydroxymethylene) cycloalkanones and sodium salts of unsaturated ketones. The antibacterial and antifungal activities of the newly synthesized compounds were evaluated and revealed that compounds 8b, 10e, 10i, and 10n were the most active compounds against Gram-positive and Gram-negative bacterial strains.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Cicloparafinas/síntese química , Cicloparafinas/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular , Pirazóis/síntese química , Pirazóis/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Espectrometria de Massas , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
7.
Acta Pharm ; 67(4): 495-510, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29337677

RESUMO

Reactivity of 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3- carbonitrile towards thioglycolic acid resulted in thiazole derivative 1. The latter reacted with different chemical reagents to give thiazole, pyrano[2,3-d]thiazole and thiazolo[ 4,5-d]thiazole derivatives. Cytotoxicity effects of the newly synthesized products against six cancer cell lines, namely, human gastric cancer (NUGC), human colon cancer (DLD- 1), human liver cancer (HA22T and HEPG-2), human breast cancer (MCF) and nasopharyngeal carcinoma (HONE-1) as well as against a normal fibroblast cell (WI-38) were evaluated. The study showed that the 4,5,6,7 tetrahydrobenzo[ b] thiophene derivatives 6a, 7, 8a,b, 9b and 10b,c w ere t he most active compounds. Their potencies were attributed to the presence of the electron withdrawing groups.


Assuntos
Citotoxinas/farmacologia , Tiazóis/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Células Hep G2/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Tiazóis/farmacologia
8.
Acta Chim Slov ; 63(2): 227-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27333544

RESUMO

The reaction of ethyl cyanoacetate with o-phenylenediamine gave the 2-cyanomethylbenzo[c]imidazole (1). The latter compound was used as the key starting material to synthesise biologically active heterocyclic derivatives. Thus, the reaction of 1 with cyclohexanone and either of benzaldehyde, 4-methoxybenzaldehyde or 4-chlorobenzaldehyde gave the annulated derivatives 2a-c, respectively. The antitumor evaluations of the newly synthesized products against the three cancer cell lines MCF-7 (breast adeno-carcinoma), NCI-H460 (non-small cell lung cancer) and SF-268 (CNS cancer) showed that compounds 2b, 6, 11b, 11c, 12b, 16a, 16b and 18a exhibited optimal cytotoxic effect against cancer cell lines, with IC50 values in the nM range. Bioactive compounds are often toxic to shrimp larvae. Thus, in order to monitor these chemicals in vivo lethality to shrimp larvae (Artemia salina), Brine-Shrimp Lethality Assay was used. Compounds 11b, 12b and 16b showed no toxicity against the tested organisms.


Assuntos
Antineoplásicos/síntese química , Compostos Heterocíclicos/síntese química , Imidazóis/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Artemia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/toxicidade , Humanos , Relação Estrutura-Atividade
9.
Acta Pharm ; 66(1): 53-68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26959543

RESUMO

Attempting to produce cyclized systems with potential anti-proliferative activity, a series of novel thiophene and benzothiophene derivatives were designed and synthesized. The reactivity of the latter derivatives towards different chemical reagents was studied. Twenty-one compounds were synthesized and evaluated as anti-cancer agents. The results showed that ethyl 5-amino-3-(4-chlorostyryl)-4-cyanothiophene-2-carboxylate (5b), ethyl 5-amino-4-((4-methoxyphenyl)carbonyl)-3-methylhiophene-2-carboxylate (8c) and 5-3-(ethoxy-3-oxopropanamido)-3-methyl-4-(phenylcarbamoyl)thiophene-2-carboxylate (9) were the most active compounds towards three tumor cell lines - MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and SF-268 (CNS cancer) and a normal fibro-blast human cell line (WI-38) compared to the anti-proliferative effects of the reference control doxorubicin.


Assuntos
Citotoxinas/síntese química , Citotoxinas/farmacologia , Tiofenos/síntese química , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Células MCF-7 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA