Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Biol Macromol ; 277(Pt 1): 134144, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053824

RESUMO

Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS characterized by continuous myelin damage accompanied by deterioration in functions. Clobetasol propionate (CP) is the most potent topical corticosteroid with serious side effects related to systemic absorption. Previous studies introduced CP for remyelination without considering systemic toxicity. This work aimed at fabrication and optimization of double coated nano-oleosomes loaded with CP to achieve brain targeting through intranasal administration. The optimized formulation was coated with lactoferrin and chitosan for the first time. The obtained double-coated oleosomes had particle size (220.07 ± 0.77 nm), zeta potential (+30.23 ± 0.41 mV) along with antioxidant capacity 9.8 µM ascorbic acid equivalents. Double coating was well visualized by TEM and significantly decreased drug release. Three different doses of CP were assessed in-vivo using cuprizone-induced demyelination in C57Bl/6 mice. Neurobehavioral tests revealed improvement in motor and cognitive functions of mice in a dose-dependent manner. Histopathological examination of the brain showed about 2.3 folds increase in corpus callosum thickness in 0.3 mg/kg CP dose. Moreover, the measured biomarkers highlighted the significant antioxidant and anti-inflammatory capacity of the formulation. In conclusion, the elaborated biopolymer-integrating nanocarrier succeeded in remyelination with 6.6 folds reduction in CP dose compared to previous studies.


Assuntos
Quitosana , Clobetasol , Cuprizona , Doenças Desmielinizantes , Modelos Animais de Doenças , Lactoferrina , Esclerose Múltipla , Remielinização , Animais , Lactoferrina/química , Lactoferrina/farmacologia , Quitosana/química , Camundongos , Clobetasol/farmacologia , Clobetasol/química , Remielinização/efeitos dos fármacos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/induzido quimicamente , Lipossomos/química , Camundongos Endogâmicos C57BL , Masculino , Tamanho da Partícula , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Liberação Controlada de Fármacos
2.
Biomater Adv ; 162: 213924, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875802

RESUMO

Chronic myeloid leukemia is a hematological cancer, where disease relapse and drug resistance are caused by bone-hosted-residual leukemia cells. An innovative resolution is bone-homing and selective-active targeting of anticancer loaded-nanovectors. Herein, ivermectin (IVM) and methyl dihydrojasmonate (MDJ)-loaded nanostructured lipid carriers (IVM-NLC) were formulated then dually decorated by lactoferrin (Lf) and alendronate (Aln) to optimize (Aln/Lf/IVM-NLC) for active-targeting and bone-homing potential, respectively. Aln/Lf/IVM-NLC (1 mg) revealed nano-size (73.67 ± 0.06 nm), low-PDI (0.43 ± 0.06), sustained-release of IVM (62.75 % at 140-h) and MDJ (78.7 % at 48-h). Aln/Lf/IVM-NLC afforded substantial antileukemic-cytotoxicity on K562-cells (4.29-fold lower IC50), higher cellular uptake and nuclear fragmentation than IVM-NLC with acceptable cytocompatibility on oral-epithelial-cells (as normal cells). Aln/Lf/IVM-NLC effectively upregulated caspase-3 and BAX (4.53 and 15.9-fold higher than IVM-NLC, respectively). Bone homing studies verified higher hydroxyapatite affinity of Aln/Lf/IVM-NLC (1 mg; 22.88 ± 0.01 % at 3-h) and higher metaphyseal-binding (1.5-fold increase) than untargeted-NLC. Moreover, Aln/Lf/IVM-NLC-1 mg secured 1.35-fold higher in vivo bone localization than untargeted-NLC, with lower off-target distribution. Ex-vivo hemocompatibility and in-vivo biocompatibility of Aln/Lf/IVM-NLC (1 mg/mL) were established, with pronounced amelioration of hepatic and renal toxicity compared to higher Aln doses. The innovative Aln/Lf/IVM-NLC could serve as a promising nanovector for bone-homing, active-targeted leukemia therapy.


Assuntos
Alendronato , Portadores de Fármacos , Ivermectina , Lactoferrina , Humanos , Animais , Portadores de Fármacos/química , Lactoferrina/química , Lactoferrina/farmacologia , Lactoferrina/administração & dosagem , Alendronato/química , Alendronato/farmacologia , Alendronato/administração & dosagem , Ivermectina/química , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/administração & dosagem , Ivermectina/farmacocinética , Células K562 , Nanopartículas/química , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Lipídeos/química , Apoptose/efeitos dos fármacos
3.
Int J Pharm ; 656: 124086, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38580074

RESUMO

Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.


Assuntos
Portadores de Fármacos , Ivermectina , Lipídeos , Nanoestruturas , Humanos , Ivermectina/administração & dosagem , Ivermectina/química , Ivermectina/farmacocinética , Ivermectina/farmacologia , Animais , Portadores de Fármacos/química , Lipídeos/química , Células K562 , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Sinergismo Farmacológico , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Masculino , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Limoninas/administração & dosagem , Limoninas/farmacologia , Limoninas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Ratos
4.
Int J Pharm X ; 7: 100236, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38524143

RESUMO

Caffeine (CAF) is a non-selective adenosine A1 receptor antagonist which predominates in fat cells. When CAF binds to adenosine receptors, it increases cyclic adenosine monophosphate; inhibiting adipogenesis and inducing fat lipolysis. Resveratrol (RSV) is an antioxidant polyphenol possessing different anti-obesity mechanisms. Topical application of both hydrophilic CAF and lipophilic RSV is limited. This study aimed to develop novel caffeinated-resveratrol bilosomes (CRB) and caffeine-bilosomes (CB) that could non-invasively target and deposit in fat cells. RSV bilosomes (RB) were prepared as a non-targeted system for comparison. CRB showed nanosize (364.1 nm ±6.5 nm) and high entrapment for both active compounds. Rats treated topically with CRB revealed a significant decrease (P = 0.039) in body weight. Histological analysis of the excised skin demonstrated a reduction in the subcutaneous fatty layer thickness and a decrease in the size of connective tissue-imbedded fat cells. Kidney histological examination of RB-treated rats showed subcapsular tubular epithelial cells with cytoplasmic vacuolation. This reflects a systemic effect of RSV from the non-targeted RB compared to CRB, which had a targeting effect on the adipose tissue. In conclusion, CAF in CRB significantly enhanced RSV deposition in adipose tissue and assisted its local-acting effect for managing obesity and cellulite.

5.
Int J Pharm ; 655: 124000, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38493840

RESUMO

Magnetic Lipid-Based Hybrid Nanosystems (M-LCNPs) is a novel nanoplatform that can respond to magnetic stimulus and are designed for delivering L-carnosine (CN), a challenging dipeptide employed in the treatment of breast cancer. CN exhibits considerable water solubility and undergoes in-vivo degradation, hence restricting its application. Consequently, it is anticipated that the developed M-LCNPs will enhance the effectiveness of CN. To ensure the physical stability of MNPs, they were initially coated with a mixture of oleic acid and oleylamine before being included in pegylated liquid crystalline nanoparticles (PLCNPs). The proposed M-LCNPs exhibited promising in-vitro characteristics, notably a small particle size (143.5 nm ± 1.25) and a high zeta potential (-39.5 mV ± 1.54), together with superparamagnetic behavior. The in-vitro release profile exhibited a prolonged release pattern. The IC50 values of M-LCNPs were 1.57 and 1.59 times lower than these of the CN solution after 24 and 48 hours, respectively. Female BALB/C female mice with an induced breast cancer (Ehrlich Ascites tumor [EAT] model) were used to study the influence of an external magnetic field on the chemotherapeutic activity and toxicity of CN loaded in the developed M-LCNPs. Stimuli-responsive M-LCNPs exhibited no apparent systemic toxicity in addition to enhanced chemotherapeutic efficacy compared to nontargeted M-LCNPs and CN solution, as evidenced by a reduction of % tumor growth (11.7%), VEGF levels (22.95 pg/g tissue), and cyclin D1 levels (27.61 ng/g tissue), and an increase in caspase-3 level (28.9 ng/g tissue). Ultimately, the developed stimuli-responsive CN loaded M-LCNPs presented a promising nanoplatform for breast cancer therapy.


Assuntos
Carcinoma de Ehrlich , Carnosina , Neoplasias , Camundongos , Animais , Feminino , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/metabolismo , Fator A de Crescimento do Endotélio Vascular , Camundongos Endogâmicos BALB C , Lipídeos , Fenômenos Magnéticos
6.
Drug Deliv Transl Res ; 14(2): 433-454, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37644299

RESUMO

Fisetin (FIS) is a multifunctional bioactive flavanol that has been recently exploited as anticancer drug against various cancers including breast cancer. However, its poor aqueous solubility has constrained its clinical application. In the current work, fisetin is complexed for the first time with soy phosphatidylcholine in the presence of cholesterol to form a novel biocompatible phytosomal system entitled "cholephytosomes." To improve fisetin antitumor activity against breast cancer, stearylamine bearing cationic cholephytosomes (mPHY) were prepared and furtherly modified with hyaluronic acid (HPHY) to allow their orientation to cancer cells through their surface exposed phosphatidylserine and CD-44 receptors, respectively. In vitro characterization studies revealed promising physicochemical properties of both modified vesicles (mPHY and HPHY) including excellent FIS complexation efficiency (Ë·100%), improved octanol/water solubility along with a sustained drug release over 24 h. In vitro cell line studies against MDA-MB-231 cell line showed about 10- and 3.5-fold inhibition in IC50 of modified vesicles compared with free drug and conventional drug-phospholipid complex, respectively. Preclinical studies revealed that both modified cholephytosomes (mPHY and HPHY) had comparable cytotoxicity that is significantly surpassing free drug cytotoxicity. TGF-ß1and its non-canonical related signaling pathway; ERK1/2, NF-κB, and MMP-9 were involved in halting tumorigenesis. Thus, tailoring novel phytosomal nanosystems for FIS could open opportunity for its clinical utility against cancer.


Assuntos
Neoplasias da Mama , Flavonoides , Humanos , Feminino , Flavonoides/farmacologia , Flavonoides/química , Neoplasias da Mama/tratamento farmacológico , Flavonóis , Polietilenoglicóis , Linhagem Celular Tumoral
7.
Int J Pharm ; 646: 123482, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802260

RESUMO

Ophthalmic delivery of luteolin (LU) was studied after formulating a carrageenan-based novel ion-sensitive in situ gel (ISG) incorporating oleophytocubosomes for prolonged ocular residence time and improved ocular bioavailability of the poorly absorbed herbal drug luteolin. The prepared oleophytocubosomes and ISG were compared with LU suspension. Optimized oleophytocubosomes possessed small, homogenously distributed negatively charged particles with high entrapment efficiency. Polarized light microscope revealed a cubic phase. Optimized ISG matrix composed of 0.4% kappa carrageenan (KC), and 2% hydroxypropylmethylcellulose (HPMC) demonstrated rapid gelation, high resistance to dilution, increased viscosity after gelation, and strong mucoadhesive properties. oleophytocubosomes exerted improved drug release, while a more sustained release was observed for ISG oleophytocubosomes. The antioxidant activity of both formulations was significantly higher than that of LU suspension. Oleophytocubosome and ISG oleophytocubosome revealed significantly higher apparent permeability coefficients of 3.62 and 2.90 folds, respectively, compared to LU suspension. Irritation tests showed the safety of both formulations for single- and multiple-ocular administration. In-vivo studies demonstrated that the ISG system showed prolonged antiglaucoma effects and a faster anti-inflammatory effect, followed by oleophytocubosomes.


Assuntos
Sistemas de Liberação de Medicamentos , Luteolina , Carragenina , Nanogéis , Géis
8.
Drug Deliv ; 30(1): 2254530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668361

RESUMO

Oral cancer is one of the leading causes of death worldwide. Oral precancerous lesions (OPL) are the precursors of oral cancer, with varying degrees of progression. Tetrahydrocurcumin (THC) is a major metabolite of curcumin with superior anticancer properties against various types of cancer. However, THC's clinical outcome is limited by its poor aqueous solubility. Herein, we developed novel mucoadhesive biopolymer-based composite sponges for buccal delivery of THC, exploiting nanotechnology and mucoadhesion for efficient prevention and treatment of oral cancer. Firstly, THC-nanocrystals (THC-NC) were formulated and characterized for subsequent loading into mucoadhesive composite sponges. The anticancer activity of THC-NC was assessed on a human tongue squamous carcinoma cell line (SCC-4). Finally, the chemopreventive activity of THC-NC loaded sponges (THC-NC-S) was examined in DMBA-induced hamster OPL. The selected THC-NC exhibited a particle size of 532.68 ± 13.20 nm and a zeta potential of -46.08 ± 1.12 mV. Moreover, THC-NC enhanced the anticancer effect against SCC-4 with an IC50 value of 80 µg/mL. THC-NC-S exhibited good mucoadhesion properties (0.24 ± 0.02 N) with sustained drug release, where 90% of THC was released over 4 days. Furthermore, THC-NC-S had a magnificent potential for maintaining high chemopreventive activity, as demonstrated by significant regression in the dysplasia degree and a decline in cyclin D1 (control: 40.4 ± 12.5, THC-NC-S: 12.07 ± 5.2), culminating in significant amelioration after 25 days of treatment. Conclusively, novel THC-NC-S represent a promising platform for local therapy of OPL, preventing their malignant transformation into cancer.


Assuntos
Neoplasias Bucais , Lesões Pré-Cancerosas , Animais , Cricetinae , Humanos , Carragenina , Neoplasias Bucais/tratamento farmacológico , Lesões Pré-Cancerosas/tratamento farmacológico
9.
Eur J Pharm Biopharm ; 189: 174-188, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343893

RESUMO

Nowadays, fisetin (FIS) is extensively studied as potent anticancer surrogate with a multitarget actions against various types of cancers including breast cancer. However, its poor aqueous solubility handicapped its clinical utility. The current work endeavored, for the first time, to develop FIS phytosomes (FIS-PHY) for improving its physicochemical properties and subsequently its anticancer activity. Optimization of FIS- phytosomes involved different preparation techniques (Thin film hydration and ethanol injection) and different FIS: phospholipid molar ratios (1:1, 1:2, and 1:3). Complex formation was confirmed by complexation efficiency, infrared spectroscopy (IR), solubility studies and transmission electron microscope. The optimized FIS-PHY of 1:1 M ratio (PHY1) exhibited a nanometric particle size of 233.01 ± 9.46 nm with homogenous distribution (PDI = 0.27), negative zeta potential of - 29.41 mV, 100% complexation efficiency and controlled drug release over 24 h. In-vitro cytotoxicity study showed 2.5-fold decrease in IC50 of PHY1 compared with free FIS. Also, pharmacodynamic studies confirmed the promoted cytotoxicity of PHY1 against breast cancer through modulating TGF-ß1/MMP-9 molecular pathways of tumorigenesis. Overall, overcoming FIS drawbacks were successfully achieved through development of innovative biocompatible phytosomal system.


Assuntos
Neoplasias da Mama , Fosfolipídeos , Humanos , Feminino , Fosfolipídeos/química , Fitossomas , Neoplasias da Mama/tratamento farmacológico , Flavonóis
10.
Int J Biol Macromol ; 241: 124528, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086764

RESUMO

Fisetin (FS) is an anticancer drug having potential role in oral tumors management. However, its clinical application is limited due to its hydrophobicity and instability. Bioactive polymers-based nanosystems have a great potential in cancer therapy. Herein, different biopolymers were selected for their anticancer activity and targeting ability for nanoparticles preparation namely; fucoidan (FU), zein (Zn) and hyaluronic acid (HA). The selected FS-loaded cross-linked Zn nanoparticles (ZFH) which contains HA& FU for Zn nanoparticles stabilization showed the most suitable particle size (196 ± 6.53 nm), mean surface net charge (-38.8 ± 1.47 mV) and entrapment efficiency (98 ± 1.2 %). This is the first study to utilize both HA &FU not only for stabilization but also for dual targeting effect due to their targeting ability to multiple tumor targets. In-vitro anticancer activity of ZHF revealed remarkable uptake by SCC-4 cells with significant cytotoxic action. Further, ZHF was appraised using 4-nitroquinoline 1-oxide (4-NQO)-induced oral cancer in-vivo; ZHF significantly reduced OSCC-specific serum biomarkers levels, histologic tumor grade and increased caspase-3 level. Moreover, potential of destroying two key tumor regulatory cells; TECs and CSCs, was evaluated using their specific markers. The elaborated ZFH nanoparticles could be considered as promising targeted nanotherapy for oral cancer treatment with enhanced efficacy and survival rate.


Assuntos
Antineoplásicos , Neoplasias Bucais , Nanopartículas , Zeína , Humanos , Ácido Hialurônico , Antineoplásicos/farmacologia , Neoplasias Bucais/tratamento farmacológico , Tamanho da Partícula , Portadores de Fármacos , Linhagem Celular Tumoral
11.
Inflammopharmacology ; 31(3): 1341-1359, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37010718

RESUMO

Diosmin is a flavonoid with promising anti-inflammatory and antioxidant properties. However, it has difficult physicochemical characteristics since its solubility demands a pH level of 12, which has an impact on the drug's bioavailability. The aim of this work is the development and characterization of diosmin nanocrystals using anti-solvent precipitation technique to be used for topical treatment of psoriasis. Results revealed that diosmin nanocrystals stabilized with hydroxypropyl methylcellulose (HPMC E15) in ratio (diosmin:polymer; 1:1) reached the desired particle size (276.9 ± 16.49 nm); provided promising colloidal properties and possessed high drug release profile. Additionally, in-vivo assessment was carried out to evaluate and compare the activities of diosmin nanocrystal gel using three different doses and diosmin powder gel in alleviating imiquimod-induced psoriasis in rats and investigating their possible anti-inflammatory mechanisms. Herein, 125 mg of 5% imiquimod cream (IMQ) was applied topically for 5 consecutive days on the shaved backs of rats to induce psoriasis. Diosmin nanocrystal gel especially in the highest dose used offered the best anti-inflammatory effect. This was confirmed by causing the most statistically significant reduction in the psoriasis area severity index (PASI) score and the serum inflammatory cytokines levels. Furthermore, it was capable of maintaining the balance between T helper (Th17) and T regulatory (Treg) cells. Moreover, it tackled TLR7/8/NF-κB, miRNA-31, AKT/mTOR/P70S6K and elevated the TNFAIP3/A20 (a negative regulator of NF-κB) expression in psoriatic skin tissues. This highlights the role of diosmin nanocrystal gel in tackling imiquimod-induced psoriasis in rats, and thus it could be a novel promising therapy for psoriasis.


Assuntos
Diosmina , MicroRNAs , Nanopartículas , Psoríase , Ratos , Animais , Camundongos , NF-kappa B/metabolismo , Imiquimode/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/uso terapêutico , Diosmina/efeitos adversos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Transdução de Sinais , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele , Serina-Treonina Quinases TOR/metabolismo , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
13.
Eur J Pharm Sci ; 179: 106297, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156294

RESUMO

Based on phytosomes advantages over liposomes, hyaluronic acid (HA) with/out pegylated phospholipid was used to develop surface-modified genistein (Gen) phytosome as Gen pegylated hyaluophytosomes (G-PHA) and Gen hyaluophytosomes (G-HA) as novel delivery systems for breast cancer treatment. In this study, in-vitro characterization of G-HA and G-PHA shows PS 144.2 ±1.266 nm and 220.3 ±2.51 nm, ZP -30.9 ±0.75 and -32.06 ±0.305 respectively. Morphological elucidation shows HA covers the surface of G-HA and the presence of a transparent layer of PEG surrounding G-PHA. In-vitro release shows a significant slow Gen release from G-HA, and G-PHA compared to Gen solution and Gen phytosomes. In-vivo bioavailability data shows improvement in bioavailability for G-HA and G-PHA compared to Gen suspension (AUC0-t: 3.563 ± 0.067, 2.092 ± 0.058, 0.374 ± 0.085 µg/ml*h respectively). Therapeutic evaluation of the prepared targeted formulations was carried out by subcutaneous injection in an EAC-induced breast cancer model in mice. G-HA and G-PHA show a promising chemotherapeutic effect in terms of lowering the tumor size and tumor biomarkers (CEA: -34.6, -44.7 & CA15.3: -77.8, -81.6, respectively). This reduction in their values compared to Gen phytosomes, Gen suspension, and the control group is attributed to high Gen accumulation at the target organ owing to targeting properties of HA that are used in phytosomal surface modification in G-HA. Additionally, the presence of MPEG2000-DSPE in G-PHA tends to improve interstitium lymphatic drainage following SC administration, resulting in maximizing the therapeutic benefits of breast cancer despite the difference in pharmacokinetics behavior compared to G-HA. These formulations can be further studied for metastatic breast cancer.


Assuntos
Genisteína , Neoplasias , Camundongos , Animais , Genisteína/farmacologia , Genisteína/uso terapêutico , Lipossomos , Ácido Hialurônico , Disponibilidade Biológica , Polietilenoglicóis
14.
Int J Pharm ; 619: 121712, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35367582

RESUMO

Piperine (PIP) is a herbal drug with well-known anticancer activity against different types of cancer including hepatocellular carcinoma. However, low aqueous solubility and extensive first-pass metabolism limit its clinical use. In this study, positively charged PIP-loaded nanostructured lipid carriers (PIP-NLCs) were prepared via melt-emulsification and ultra-sonication method followed by pectin coating to get novel pectin-coated NLCs (PIP-P-NLCs) targeting hepatocellular carcinoma. Complete in vitro characterization was performed. In addition, cytotoxicity and cellular uptake of nanosystems in HepG2 cells were evaluated. Finally, in vivo anticancer activity was tested in the diethylnitrosamine-induced hepatocellular carcinoma mice model. Successful pectin coating was confirmed by an increased particle size of PIP-NLCs from 150.28 ± 2.51 nm to 205.24 ± 5.13 nm and revered Zeta potential from 33.34 ± 3.52 mV to -27.63 ± 2.05 mV. Nanosystems had high entrapment efficiency, good stability, spherical shape, and sustained drug release over 24 h. Targeted P-NLCs enhanced the cytotoxicity and cellular uptake compared to untargeted NLCs. Furthermore, PIP-P-NLCs improved in vivo anticancer effect of PIP as proved by histological examination of liver tissues, suppression of liver enzymes and oxidative stress environment in the liver, and alteration of cell cycle regulators. To conclude, PIP-P-NLCs can act as a promising approach for targeted delivery of PIP to hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanoestruturas , Alcaloides , Animais , Benzodioxóis , Carcinoma Hepatocelular/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Lipídeos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Tamanho da Partícula , Pectinas , Piperidinas , Alcamidas Poli-Insaturadas
15.
AAPS PharmSciTech ; 22(7): 246, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34617166

RESUMO

Andrographolide (AG) is an antitumor phytochemical that acts against non-Hodgkin's lymphoma. However, AG shows low oral bioavailability due to extensive first-pass metabolism and P-glycoprotein efflux. Novel biocompatible lipoprotein-simulating nanosystems, emulsomes (EMLs), have gained significant attention due to their composition of natural components, in addition to being lymphotropic. Loading AG on EMLs is believed to mitigate the disadvantage of AG and enhance its lymphatic transport. This study developed a chylomicron-simulating system (EMLs) as a novel tool to overcome the AG oral delivery obstacles. Optimized EML-AG had a promising vesicular size of 281.62 ± 1.73 nm, a zeta potential of - 22.73 ± 0.06 mV, and a high entrapment efficiency of 96.55% ± 0.25%, which favors lymphatic targeting. In vivo pharmacokinetic studies of EML-AG showed significant enhancement (> sixfold increase) in the rate and extent of AG absorption compared with free AG. However, intraperitoneal injection of a cycloheximide inhibitor caused a significant decrease in AG absorption (~ 52%), confirming the lymphatic targeting potential of EMLs. Therefore, EMLs can be a promising novel nanoplatform for circumventing AG oral delivery obstacles and provide targeted delivery to the lymphatic system at a lower dose with fewer side effects.


Assuntos
Diterpenos , Administração Oral , Disponibilidade Biológica , Compostos Fitoquímicos
16.
Nanomedicine (Lond) ; 16(22): 1983-1998, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34420422

RESUMO

Aim: The aim of this study was to elaborate on 'bioemulsomes,' novel biocompatible lipoprotein analogs for effective lymphatic transport of baicalin (BCL). Methods: BCL bioemulsomes were developed and optimized and in vitro physicochemical characterization performed. The bioavailability of BCL bioemulsomes compared with free BCL was investigated using in vivo pharmacokinetics studies. Finally, BCL lymphatic transport was assessed via cycloheximide blockade assay. Results: Optimized BCL-loaded nanoemulsomes showed promising in vitro characteristics that favor lymphatic targeting. In vivo pharmacokinetics showed a significant improvement in bioavailability over free BCL. A significant decrease in BCL emulsome absorption (33%) was exhibited after chemical blockage of the lymphatic pathway, confirming the lymphatic transport potential. Conclusion: Bioemulsomes could be a promising tool for bypassing BCL oral delivery hurdles as well as lymphatic transport, paving the way for potential treatment of lymphoma.


Assuntos
Flavonoides , Administração Oral , Animais , Disponibilidade Biológica , Ratos , Ratos Sprague-Dawley
17.
Int J Pharm ; 602: 120666, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933646

RESUMO

PEGylated Liquisomes (P-Liquisomes), a novel drug delivery system was designed for the first time by incorporating phospholipid complex in PEGylated liquid crystalline nanoparticles (P-LCNPs). L-carnosine (CN), a challenging dipeptide, has proven to be a promising anti-cancer drug. However, it exhibits high water solubility and extensive in-vivo degradation that halts its use. The objective of this work was to investigate the ability of our novel system to improve the CN anticancer activity by prolonging it's release and protecting it in-vivo. In-vitro appraisal revealed spherical light-colored vesicles encapsulated in the liquid crystals, confirming the successful formation of the combined system. P-Liquisomes were nano-sized (149.3 ± 1.4 nm), with high ZP (-40.2 ± 1.5 mV), complexation efficiency (97.5 ± 0.9%) and outstanding sustained release of only 75.4% released after 24 h, compared to P-LCNPs and Phytosomes. The results obtained with P-Liquisomes are considered as a break through compared to P-LCNPs or Phytosomes alone, especially when dealing with the hydrophilic CN. In-vitro cytotoxicity evaluation, revealed superior cytotoxic effect of P-Liquisomes (IC50 = 25.9) after 24 h incubation. Besides, P-Liquisomes proved to be non-toxic in-vivo and succeeded to show superior chemopreventive activity manifested by reduction of; % tumor growth (7.1%), VEGF levels (14.3 pg/g tissue), cyclin D1 levels 15.5 ng/g tissue and elevation in caspase-3 level (36.4 ng/g tissue), compared to Phytosomes and CN solution. Conclusively, P-Liquisomes succeded to achieve the maximum therapeutic outcome of CN without altering its activity and might be used as a sustained delivery system for other promising hydrophilic compounds.


Assuntos
Neoplasias da Mama , Carnosina , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Polietilenoglicóis , Fator A de Crescimento do Endotélio Vascular
18.
Int J Pharm ; 601: 120564, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33812970

RESUMO

Genistein (Gen) is one of the most potent soy isoflavones used for hepatocellular carcinoma (HCC) treatment. Low aqueous solubility and first-pass metabolism are the main obstacles resulting in low Gen oral bioavailability. The current study aims to introduce phytosomes as an approach to improve Gen solubility, protect it from metabolism by complexation with phospholipids (PL), and get used to PL in Gen lymphatic delivery. Different forms of PL namely: Lipiod® S100, Phosal® 53 MCT, and Phosal®75 SA were used in phytosomes preparation GP, GPM, and GPL respectively. The effect of formulation components on Gen absorption, metabolism, and liver accumulation was evaluated following oral administration to rats. Cytotoxicity and cellular uptake studies were applied on HepG2 cells and in-vivo anti-tumor studies were applied to the DEN-mice model. Results revealed that GP and GPL remarkably accumulated Gen aglycone in hepatic cells and minimized the metabolic effect on Gen. They significantly increased the intracellular accumulation of Gen in its complex form in HepG2 cells. Their cytotoxicity is time-dependent according to the complex stability. The enhanced in-vivo anti-tumor effect was observed for GP and GPL compared to Gen suspension on DEN-induced HCC in mice. In conclusion, Gen-phytosomes can represent a promising approach for liver cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Genisteína , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Ratos , Solubilidade
19.
Drug Deliv Transl Res ; 11(3): 1107-1118, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32815084

RESUMO

Rhein (RH), an anthraquinone derivative, has proven to be a promising molecule for treating several skin disorders thanks to its pleiotropic pharmacological activities like antimicrobial, antifungal, antioxidant, and anticancer. However, RH's low water and oil solubility and poor skin permeability halted its topical delivery. This is the first work to investigate the expediency of tailoring a rhein-phospholipid complex (RH-PLC) to improve RH challenging physicochemical and skin permeability properties. The phospholipid complex was prepared by employing different methods and different RH/PL molar ratios. RH-PLC was successfully developed at a stoichiometric ratio of 1:1 using a novel pH-dependent method where at a certain pH, it exhibits the highest complexation efficiency (95%). RH-PLC formation was confirmed using FTIR, DSC, and XRPD analysis. RH-PLC showed a significant increase in water and n-octanol solubility. RH-PLC was self-assembled upon dispersion into water forming nano-sized particles (196.6 ± 1.6 nm) with high negatively charged surface (- 29.7 ± 2.45 mV). RH-PLC exhibited a significant 3.3- and 2.46-fold increase in ex vivo and in vivo skin permeability when compared with RH suspension, respectively. Confocal microscopy study confirmed the ability of RH-PLC to penetrate deeply into rat skin. Besides, skin irritation test on healthy rats indicated compatibility and safety of RH-PLC. Conclusively, phospholipid complex might be a suitable approach to improve permeability of RH and other promising abandoned poor-permeable drugs. The proposed RH-PLC is expected to be a major progressive step toward the development of a topical RH formulation. Graphical abstract.


Assuntos
Fosfolipídeos , Dermatopatias , Animais , Antraquinonas/farmacologia , Fosfolipídeos/química , Ratos , Pele , Dermatopatias/tratamento farmacológico , Solubilidade
20.
Int J Biol Macromol ; 170: 284-297, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340624

RESUMO

Pancreatic cancer is a devastating gastrointestinal tumor with limited Chemotherapeutic options. Treatment is restricted by its poor vascularity and dense surrounding stroma. Quinacrine is a repositioned drug with an anticancer activity but suffers a limited ability to reach tumor cells. This could be enhanced using nanotechnology by the preparation of quinacrine-loaded Undaria pinnatifida fucoidan nanoparticles. The system exploited fucoidan as both a delivery system of natural origin and active targeting ligand. Lactoferrin was added as a second active targeting ligand. Single and dual-targeted particles prepared through nanoprecipitation and ionic interaction respectively were appraised. Both particles showed a size lower than 200 nm, entrapment efficiency of 80% and a pH-dependent release of the drug in the acidic environment of the tumor. The anticancer activity of quinacrine was enhanced by 5.7 folds in dual targeted particles compared to drug solution with a higher ability to inhibit migration and invasion of cancer. In vivo, these particles showed a 68% reduction in tumor volume compared to only 20% for drug solution. In addition, they showed a higher animals' survival rate with no hepatotoxicity. Hence, these particles could be an effective option for the eradication of pancreatic cancer cells.


Assuntos
Neoplasias Pancreáticas/tratamento farmacológico , Polissacarídeos/farmacologia , Undaria/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Metástase Neoplásica/tratamento farmacológico , Polissacarídeos/metabolismo , Quinacrina/metabolismo , Quinacrina/farmacologia , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA