Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 857, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039591

RESUMO

Sorghum damping-off, caused by Fusarium solani (Mart.) Sacc., is a serious disease which causes economic loss in sorghum production. In this study, antagonistic activity of lavender essential oil (EO) at 0.5, 0.75, 1.0, 1.25, 1.5, and 1.6% against F. solani was studied in vitro. Their effects on regulation of three SbWRKY transcription factors, the response factor JERF3 and eight defense-related genes, which mediate different signaling pathways, in sorghum were investigated. Effects of application under greenhouse conditions were also evaluated. The results showed that lavender EO possesses potent antifungal activity against F. solani. A complete inhibition in the fungal growth was recorded for lavender EO at 1.6%. Gas chromatography-mass spectrometric analysis revealed that EO antifungal activity is most likely attributed to linalyl anthranilate, α-terpineol, eucalyptol, α-Pinene, and limonene. Observations using transmission electron microscopy revealed many abnormalities in the ultrastructures of the fungal mycelium as a response to treating with lavender EO, indicating that multi-mechanisms contributed to their antagonistic behavior. Results obtained from Real-time PCR investigations demonstrated that the genes studied were overexpressed, to varying extents in response to lavender EO. However, SbWRKY1 was the highest differentially expressed gene followed by JERF3, which suggest they play primary role(s) in synchronously organizing the transcription-regulatory-networks enhancing the plant resistance. Under greenhouse conditions, treating of sorghum grains with lavender EO at 1.5% prior to infection significantly reduced disease severity. Moreover, the growth parameters evaluated, the activities of antioxidant enzymes, and total phenolic and flavonoid contents were all enhanced. In contrast, lipid peroxidation was highly reduced. Results obtained from this study support the possibility of using lavender EO for control of sorghum damping-off. However, field evaluation is highly needed prior to any usage recommendation.


Assuntos
Antifúngicos , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Expressão Gênica/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Lavandula/química , Óleos Voláteis/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Óleos de Plantas/farmacologia , Sorghum/genética , Sorghum/microbiologia , Fatores de Transcrição/genética , Farmacorresistência Fúngica , Expressão Gênica/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Fatores de Transcrição/metabolismo
2.
Front Plant Sci ; 12: 763365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777446

RESUMO

Downy mildew is the most destructive disease of grapevines in the regions of relatively warm and humid climate causing up to 50% yield losses. Application of silicon- (Si-) based products have been extensively studied against various oomycete, fungal, bacterial, and viral plant diseases, but studies on Si application in their nanosize are limited. In this study, the field application of silica nanoparticles (SiNPs) on Thompson Seedless grapevines (H4 strain) infected with downy mildew was evaluated. In addition, molecular, physiological, ultrastructural, and toxicity investigations were also conducted. The obtained results revealed that spraying of grapevines with SiNPs at 150 ppm significantly overexpressed the transcription factor jasmonate and ethylene-responsive factor 3 recording 8.7-fold, and the defense-related genes ß-1,3-glucanase (11-fold), peroxidase (10.7-fold) pathogenesis-related-protein 1 (10.6-fold), and chitinase (6.5-fold). Moreover, a reduction up to 81.5% in the disease severity was achieved in response to this treatment. Shoot length and yield per grapevine were considerably enhanced recording up to 26.3 and 23.7% increase, respectively. The berries quality was also improved. Furthermore, this treatment led to an enhancement in the photosynthetic pigments, induction of phenolic and ascorbic acid contents, an increase in the activity of peroxidase and polyphenol oxidase enzymes, and a reduction in the cellular electrolyte leakage, lipid peroxidation, and H2O2 content. Scanning electron microscopy observations showed an increase up to 86.6% in the number of closed stomata and a reduction up to 55% in the average stomatal pore area in response to this treatment. Observations of the transmission electron microscopy showed ultrastructural alterations in the cells of a grapevine leaf due to the infection with downy mildew, including plasmolysis and disruption of the cellular components, abnormal chloroplasts, and thickening of the cell wall and cell membrane. These abnormal alterations were reduced in response to SiNPs spray. In contrast, this study also showed that this treatment had considerable cytotoxic and genotoxic effects at this direct dose/concentration. So, additional investigations to determine the SiNPs residue in the produced edible plant parts are urgently needed. In addition, the pre-harvest interval, toxicity index, and risk assessment should be evaluated before any recommendation for use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA