Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Theriogenology ; 224: 107-118, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761667

RESUMO

Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory potential and may be used to treat injured tissues. Pregnancy has been associated with increased MSCs in the peripheral circulation in multiple species, but to date, there are no reports on this matter in horses. This study aimed to evaluate the effect of pregnancy on isolation efficiency and proliferation capacity of equine MSCs derived from the peripheral blood (PB) of mares. Venous blood samples were collected at the 11th month of gestation and 1 month after delivery from clinically healthy Arabian mares that presented normal pregnancies. Blood samples were processed for in vitro cellular culture and hormonal and metabolic profiles. MSCs were isolated and characterized by trilineage differentiation potential, immunophenotyping, analyzed by gene sequencing and proliferation assays. The isolation of peripheral blood mononuclear cells (PBMCs) of pregnant mares were associated with higher isolation efficiency and proliferative capacity of MSCs derived from peripheral blood (PB-MSCs) recovered pre-partum than those isolated post-partum. Although fetal gender, parity, 5α-reduced pregnanes, insulin, and cortisol were shown to affect cellular proliferation, individual factors and the small population studied must be considered. This study suggests that PB-MSCs from pregnant mares could be a valuable alternative source of MSCs for therapeutic purposes.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais , Animais , Feminino , Cavalos , Gravidez , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Mesenquimais/citologia , Prenhez , Leucócitos Mononucleares/fisiologia , Diferenciação Celular , Células Cultivadas
2.
Cells ; 12(23)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067110

RESUMO

Targeting tumour metabolism through glucose transporters is an attractive approach. However, the role these transporters play through interaction with other signalling proteins is not yet defined. The glucose transporter SLC2A3 (GLUT3) is a member of the solute carrier transporter proteins. GLUT3 has a high affinity for D-glucose and regulates glucose uptake in the neurons, as well as other tissues. Herein, we show that GLUT3 is involved in the uptake of arsenite, and its level is regulated by peroxiredoxin 1 (PRDX1). In the absence of PRDX1, GLUT3 mRNA and protein expression levels are low, but they are increased upon arsenite treatment, correlating with an increased uptake of glucose. The downregulation of GLUT3 by siRNA or deletion of the gene by CRISPR cas-9 confers resistance to arsenite. Additionally, the overexpression of GLUT3 sensitises the cells to arsenite. We further show that GLUT3 interacts with PRDX1, and it forms nuclear foci, which are redistributed upon arsenite exposure, as revealed by immunofluorescence analysis. We propose that GLUT3 plays a role in mediating the uptake of arsenite into cells, and its homeostatic and redox states are tightly regulated by PRDX1. As such, GLUT3 and PRDX1 are likely to be novel targets for arsenite-based cancer therapy.


Assuntos
Arsenitos , Transportador de Glucose Tipo 3 , Arsenitos/toxicidade , Glucose/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Linfócitos Nulos/efeitos dos fármacos , Linfócitos Nulos/metabolismo , Peroxirredoxinas/metabolismo , Humanos , Células HEK293
3.
Stem Cell Rev Rep ; 19(4): 942-952, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36707464

RESUMO

The multipotent pancreatic progenitor cells (MPCs) co-expressing the transcription factors, PDX1 and NKX6.1, are the source of functional pancreatic ß-cells. The aim of this study was to examine the effect of p53 inhibition in MPCs on the generation of PDX1+/NKX6.1+ MPCs and pancreatic ß-cell generation. Human embryonic stem cells (hESCs) were differentiated into MPCs and ß-cells. hESC-MPCs (stage 4) were treated with different concentrations of p53 inhibitors, and their effect was evaluated using different approaches. NKX6.1 was overexpressed during MPCs specification. Inhibition of p53 using pifithrin-µ (PFT-µ) at the MPC stage resulted in a significant increase in the number of PDX1+/NKX6.1+ cells and a reduction in the number of CHGA+/NKX6.1- cells. Further differentiation of MPCs treated with PFT-µ into pancreatic ß-cells showed that PFT-µ treatment did not significantly change the number of C-Peptide+ cells; however, the number of C-PEP+ cells co-expressing glucagon (polyhormonal) was significantly reduced in the PFT-µ treated cells. Interestingly, overexpression of NKX6.1 in hESC-MPCs enhanced the expression of key MPC genes and dramatically suppressed p53 expression. Our findings demonstrated that the p53 inhibition during stage 4 of differentiation enhanced MPC generation, prevented premature endocrine induction and favored the differentiation into monohormonal ß-cells. These findings suggest that adding a p53 inhibitor to the differentiation media can significantly enhance the generation of monohormonal ß-cells.


Assuntos
Células-Tronco Pluripotentes , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Diferenciação Celular/genética
4.
Semin Cancer Biol ; 87: 1-16, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36354097

RESUMO

The interplay between microRNAs (miRNAs) and pluripotency transcription factors (TFs) orchestrates the acquisition of cancer stem cell (CSC) features during the course of malignant transformation, rendering them essential cancer cell dependencies and therapeutic vulnerabilities. In this review, we discuss emerging themes in tumor heterogeneity, including the clonal evolution and the CSC models and their implications in resistance to cancer therapies, and then provide thorough coverage on the roles played by key TFs in maintaining normal and malignant stem cell pluripotency and plasticity. In addition, we discuss the reciprocal interactions between miRNAs and MYC, OCT4, NANOG, SOX2, and KLF4 pluripotency TFs and their contributions to tumorigenesis. We provide our view on the potential to interfere with key miRNA-TF networks through the use of RNA-based therapeutics as single agents or in combination with other therapeutic strategies, to abrogate the CSC state and render tumor cells more responsive to standard and targeted therapies.


Assuntos
MicroRNAs , Neoplasias , Humanos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , MicroRNAs/genética , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/genética
5.
J Vis Exp ; (180)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35225274

RESUMO

Recent advances in induced pluripotent stem cell (iPSC) technology have allowed the generation of different cell types, including adipocytes. However, the current differentiation methods have low efficiency and do not produce a homogenous population of adipocytes. Here, we circumvent this problem by using an all-trans retinoic-based method to produce mesenchymal stem cells (MSCs) in high yield. By regulating pathways governing cell proliferation, survival, and adhesion, our differentiation strategy allows the efficient generation of embryonic bodies (EBs) that differentiate into a pure population of multipotent MSCs. The high number of MSCs generated by this method provides an ideal source for generating adipocytes. However, sample heterogeneity resulting from adipocyte differentiation remains a challenge. Therefore, we used a Nile red-based method for purifying lipid-bearing mature adipocytes using FACS. This sorting strategy allowed us to establish a reliable way to model adipocyte-associated metabolic disorders using a pool of adipocytes with reduced sample heterogeneity and enhanced cell functionality.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Adipócitos , Diferenciação Celular/fisiologia , Corpos Embrioides , Humanos
6.
Methods Mol Biol ; 2454: 257-271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32894408

RESUMO

Mesenchymal stem cells (MSCs) can be isolated from different sources, such as bone marrow, cord blood, and adipose tissue; however, there are variations in MSC capabilities based on their origin, donor age, and culturing method. Recently, human pluripotent stem cells (hPSCs) have been proposed as an alternative renewal source for generating MSCs with large number. Herein, we describe our recently established All-trans retinoic acid (RA)-based approach for generating a scalable number of MSCs from hPSCs. Our protocol generates highly proliferating MSCs that have all MSC characteristics, including fibroblast-like morphology, expression of the key MSC markers, lack of the hematopoietic markers, and ability to differentiate into the three mesodermal lineages. This RA-based method provides a protocol for generating an unlimited number of hPSC-derived MSCs that could be useful for cell therapy, drug screening, and disease modeling applications.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Tecido Adiposo , Diferenciação Celular , Células Cultivadas , Humanos , Mesoderma
7.
Methods Mol Biol ; 2454: 351-363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33190184

RESUMO

Diabetes is a complex metabolic disorder, with no available treatment. Islet transplantation is currently practiced beta cell replacement therapy option, however, with major limitations. Human pluripotent stem cells (hPSCs) can be used as a scalable source for generation of insulin-secreting cells as hPSCs have high proliferative capacity and can differentiate into any tissue type. In vitro stepwise protocols have been designed for differentiating hPSCs into pancreatic lineages that finally give rise to beta cells; however, these hPSC-derived beta cells are dissimilar to adult human beta cells in key aspects of gene expression and functionality. Alternatively, pancreatic progenitors, when transplanted in the body, have been shown to mature into functional insulin-secreting beta cells, capable of reversing hyperglycemia. These pancreatic progenitors require the co-expression of PDX1, a transcription factor (TF) regulating pancreatic development, and NKX6.1, another TF key for beta cell maturation and function, to produce glucose-responsive beta cells. Given the crucial role played by NKX6.1, we optimized an in vitro differentiation protocol to enhance the generation of pancreatic progenitors co-expressing PDX1 and NKX6.1 by modulating cell density, matrix availability, and cellular dissociation.


Assuntos
Proteínas de Homeodomínio , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Transativadores , Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Pâncreas , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Stem Cell Res ; 54: 102433, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34171785

RESUMO

Recessive mutations in the glucose transporter gene SLC2A2 (GLUT2) lead to permanent neonatal diabetes (PNDM) and Fanconi Bickel Syndrome (FBS). Here, we generated an induced pluripotent stem cell (iPSC) line, QBRIi012-A, from a 24-month-old boy with FBS and PNDM due to homozygous nonsense mutation in the SLC2A2 gene (c.901C > T). The QBRIi012-A was fully characterized using different approaches. The cell line showed normal karyotype and was able to differentiate into the three germ layers in vitro. This iPSC line provides a novel human cell model to understand the pathophysiology of FBS and diabetes associated with SLC2A2 defects.


Assuntos
Diabetes Mellitus , Síndrome de Fanconi , Células-Tronco Pluripotentes Induzidas , Pré-Escolar , Transportador de Glucose Tipo 2/genética , Homozigoto , Humanos , Recém-Nascido , Masculino , Mutação
9.
Diabetes Metab Res Rev ; 37(5): e3400, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32857429

RESUMO

AIM: Beta cell replacement strategies are a promising alternative for diabetes treatment. Human pluripotent stem cells (hPSCs) serve as a scalable source for producing insulin-secreting cells for transplantation therapy. We recently generated novel hPSC-derived pancreatic progenitors, expressing high levels of the transcription factor NKX6.1, in the absence of PDX1 (PDX1- /NKX6.1+ ). Herein, our aim was to characterize this novel population and assess its ability to differentiate into insulin-secreting beta cells in vitro. MATERIALS AND METHODS: Three different hPSC lines were differentiated into PDX1- /NKX6.1+ progenitors, which were further differentiated into insulin-secreting cells using two different protocols. The progenitors and beta cells were extensively characterized. Transcriptome analysis was performed at different stages and compared with the profiles of various pancreatic counterparts. RESULTS: PDX1- /NKX6.1+ progenitors expressed high levels of nestin, a key marker of pancreatic islet-derived progenitors, in the absence of E-cadherin, similar to pancreatic mesenchymal stem cells. At progenitor stage, comparison of the two populations showed downregulation of pancreatic epithelial genes and upregulation of neuronal development genes in PDX1- /NKX6.1+ cells in comparison to the PDX1+ /NKX6.1+ cells. Interestingly, on further differentiation, PDX1- /NKX6.1+ cells generated mono-hormonal insulin+ cells and activated pancreatic key genes, such as PDX1. The transcriptome profile of PDX1- /NKX6.1+ -derived beta (3D-beta) was closely similar to those of human pancreatic islets and purified hPSC-derived beta cells. Also, the 3D-beta cells secreted C-peptide in response to increased glucose concentrations indicating their functionality. CONCLUSION: These findings provide a novel source of insulin-secreting cells that can be used for beta cell therapy for diabetes.


Assuntos
Células Secretoras de Insulina , Células-Tronco Pluripotentes , Peptídeo C , Diabetes Mellitus , Proteínas de Homeodomínio/genética , Humanos , Transativadores/genética
10.
Stem Cell Res Ther ; 11(1): 437, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059757

RESUMO

The COVID-19 pandemic has negatively impacted the global public health and the international economy; therefore, there is an urgent need for an effective therapy to treat COVID-19 patients. Mesenchymal stem cells (MSCs) have been proposed as an emerging therapeutic option for the SARS-CoV-2 infection. Recently, numerous clinical trials have been registered to examine the safety and efficacy of different types of MSCs and their exosomes for treating COVID-19 patients, with less published data on the mechanism of action. Although there is no approved effective therapy for COVID-19 as of yet, MSC therapies showed an improvement in the treatment of some COVID-19 patients. MSC's therapeutic effect is displayed in their ability to reduce the cytokine storm, enhance alveolar fluid clearance, and promote epithelial and endothelial recovery; however, the safest and most effective route of MSC delivery remains unclear. The use of poorly characterized MSC products remains one of the most significant drawbacks of MSC-based therapy, which could theoretically promote the risk for thromboembolism. Optimizing the clinical-grade production of MSCs and establishing a consensus on registered clinical trials based on cell-product characterization and mode of delivery would aid in laying the foundation for a safe and effective therapy in COVID-19. In this review, we shed light on the mechanistic view of MSC therapeutic role based on preclinical and clinical studies on acute lung injury and ARDS; therefore, offering a unique correlation and applicability in COVID-19 patients. We further highlight the challenges and opportunities in the use of MSC-based therapy.


Assuntos
Lesão Pulmonar Aguda/terapia , Infecções por Coronavirus/terapia , Síndrome da Liberação de Citocina/terapia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Pneumonia Viral/terapia , Lesão Pulmonar Aguda/virologia , Betacoronavirus , COVID-19 , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Células-Tronco Mesenquimais/metabolismo , Pandemias , SARS-CoV-2
11.
Cells ; 9(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183164

RESUMO

Human pluripotent stem cells (hPSCs) can provide unlimited supply for mesenchymal stem cells (MSCs) and adipocytes that can be used for therapeutic applications. Here we developed a simple and highly efficient all-trans-retinoic acid (RA)-based method for generating an off-the-shelf and scalable number of human pluripotent stem cell (hPSC)-derived MSCs with enhanced adipogenic potential. We showed that short exposure of multiple hPSC lines (hESCs/hiPSCs) to 10 µM RA dramatically enhances embryoid body (EB) formation through regulation of genes activating signaling pathways associated with cell proliferation, survival and adhesion, among others. Disruption of cell adhesion induced the subsequent differentiation of the highly expanded RA-derived EB-forming cells into a pure population of multipotent MSCs (up to 1542-fold increase in comparison to RA-untreated counterparts). Interestingly, the RA-derived MSCs displayed enhanced differentiation potential into adipocytes. Thus, these findings present a novel RA-based approach for providing an unlimited source of MSCs and adipocytes that can be used for regenerative medicine, drug screening and disease modeling applications.


Assuntos
Adipócitos/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Tretinoína/farmacologia
12.
Stem Cell Res ; 44: 101736, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32146263

RESUMO

Fanconi Bickel Syndrome (FBS) is an autosomal recessive disease resulting from mutations in the SLC2A2 gene, encoding the GLUT2. FBS patients develop diabetes mellitus. Using non-integrating Sendai virus, we generated an induced pluripotent stem cell (iPSC) line, QBRIi007-A, carrying the c.613-7 T>G homozygous mutation in intron 5 of the SLC2A2 gene from a 19-year-old female with FBS and diabetes. The iPSC line was characterized for pluripotency, differentiation potential, genomic integrity, and genetic identity. This iPSC line provides a useful cell model to understand the role of GLUT2 in the disease development and to discover new drug candidates.


Assuntos
Linhagem Celular , Síndrome de Fanconi , Células-Tronco Pluripotentes Induzidas , Adulto , Feminino , Transportador de Glucose Tipo 2 , Homozigoto , Humanos , Mutação , Adulto Jovem
13.
Cells ; 9(2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979403

RESUMO

Diabetes mellitus (DM) is one of the most prevalent metabolic disorders. In order to replace the function of the destroyed pancreatic beta cells in diabetes, islet transplantation is the most widely practiced treatment. However, it has several limitations. As an alternative approach, human pluripotent stem cells (hPSCs) can provide an unlimited source of pancreatic cells that have the ability to secrete insulin in response to a high blood glucose level. However, the determination of the appropriate pancreatic lineage candidate for the purpose of cell therapy for the treatment of diabetes is still debated. While hPSC-derived beta cells are perceived as the ultimate candidate, their efficiency needs further improvement in order to obtain a sufficient number of glucose responsive beta cells for transplantation therapy. On the other hand, hPSC-derived pancreatic progenitors can be efficiently generated in vitro and can further mature into glucose responsive beta cells in vivo after transplantation. Herein, we discuss the advantages and predicted challenges associated with the use of each of the two pancreatic lineage products for diabetes cell therapy. Furthermore, we address the co-generation of functionally relevant islet cell subpopulations and structural properties contributing to the glucose responsiveness of beta cells, as well as the available encapsulation technology for these cells.


Assuntos
Diabetes Mellitus/terapia , Células Secretoras de Insulina/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Comunicação Celular , Diabetes Mellitus/imunologia , Humanos , Imunomodulação , Células Secretoras de Insulina/imunologia
14.
Mol Genet Genomic Med ; 7(10): e00753, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31441606

RESUMO

BACKGROUND: Neonatal diabetes mellitus (NDM) is a rare condition that occurs within the first six months of life. Permanent NDM (PNDM) is caused by mutations in specific genes that are known for their expression at early and/or late stages of pancreatic beta- cell development, and are either involved in beta-cell survival, insulin processing, regulation, and release. The native population in Qatar continues to practice consanguineous marriages that lead to a high level of homozygosity. To our knowledge, there is no previous report on the genomics of NDM among the Qatari population. The aims of the current study are to identify patients with NDM diagnosed between 2001 and 2016, and examine their clinical and genetic characteristics. METHODS: To calculate the incidence of PNDM, all patients with PNDM diagnosed between 2001 and 2016 were compared to the total number of live births over the 16-year-period. Whole Genome Sequencing (WGS) was used to investigate the genetic etiology in the PNDM cohort. RESULTS: PNDM was diagnosed in nine (n = 9) patients with an estimated incidence rate of 1:22,938 live births among the indigenous Qatari. Seven different mutations in six genes (PTF1A, GCK, SLC2A2, EIF2AK3, INS, and HNF1B) were identified. In the majority of cases, the genetic etiology was part of a previously identified autosomal recessive disorder. Two novel de novo mutations were identified in INS and HNF1B. CONCLUSION: Qatar has the second highest reported incidence of PNDM worldwide. A majority of PNDM cases present as rare familial autosomal recessive disorders. Pancreas associated transcription factor 1a (PTF1A) enhancer deletions are the most common cause of PNDM in Qatar, with only a few previous cases reported in the literature.


Assuntos
Diabetes Mellitus/diagnóstico , Glicemia/análise , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Elementos Facilitadores Genéticos , Epífises/anormalidades , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/genética , Feminino , Deleção de Genes , Quinases do Centro Germinativo/genética , Transportador de Glucose Tipo 2/genética , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Linhagem , Fenótipo , Catar , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma
15.
Sci Rep ; 9(1): 8756, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217484

RESUMO

We examined the potential value of the natural killer (NK) cell line; NK-92, as immunotherapy tool for breast cancer (BC) treatment and searched for biomarker(s) of sensitivity to NK-92-mediated cytotoxicity. The cytotoxic activity of NK-92 cells towards one breast precancerous and nine BC cell lines was analyzed using calcein-AM and degranulation assays. The molecules associated with NK-92-responsiveness were determined by differential gene expression analysis using RNA-sequencing and validated by RT-PCR, immunostaining and flow cytometry. NK-target interactions and immunological synapse formation were assessed by fluorescence microscopy. Potential biomarker expression was determined by IHC in 99 patient-derived BC tissues and 10 normal mammary epithelial tissues. Most (8/9) BC cell lines were resistant while only one BC and the precancerous cell lines were effectively killed by NK-92 lymphocytes. NK-92-sensitive target cells specifically expressed CD56, which ectopic expression in CD56-negative BC cells induced their sensitivity to NK-92-mediated killing, suggesting that CD56 is not only a biomarker of responsiveness but actively regulates NK function. CD56 adhesion molecules which are also expressed on NK cells accumulate at the immunological synapse enhancing NK-target interactions, cytotoxic granzyme B transfer from NK-92 to CD56-expressing target cells and induction of caspase 3 activation in targets. Interestingly, CD56 expression was found to be reduced in breast tumor tissues (36%) with strong inter- and intratumoral heterogeneity in comparison to normal breast tissues (80%). CD56 is a potential predictive biomarker for BC responsiveness to NK-92-cell based immunotherapy and loss of CD56 expression might be a mechanism of escape from NK-immunity.


Assuntos
Neoplasias da Mama/imunologia , Antígeno CD56/imunologia , Imunidade Celular , Sinapses Imunológicas/metabolismo , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias da Mama/patologia , Feminino , Humanos , Sinapses Imunológicas/patologia , Células Matadoras Naturais/patologia , Células MCF-7
16.
J Transl Med ; 16(1): 276, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305089

RESUMO

New technologies and therapies designed to facilitate development of personalized treatments are rapidly emerging in the field of biomedicine. Strikingly, the goal of personalized medicine refined the concept of therapy by developing cell-based therapies, the so-called "living drugs". Breakthrough advancements were achieved in this regard in the fields of gene therapy, cell therapy, tissue-engineered products and advanced therapeutic techniques. The Advanced Therapies in Healthcare symposium, organized by the Clinical Research Center Department of Sidra Medicine, in Doha, Qatar (October 2017), brought together world-renowned experts from the fields of oncology, hematology, immunology, inflammation, autoimmune disorders, and stem cells to offer a comprehensive picture of the status of worldwide advanced therapies in both pre-clinical and clinical development, providing insights to the research phase, clinical data and regulatory aspects of these therapies. Highlights of the meeting are provided in this meeting report.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Medicina de Precisão , Terapia Genética , Humanos , Imunoterapia , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/terapia , Catar
17.
World J Stem Cells ; 7(1): 174-81, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25621117

RESUMO

Pluripotent stem cells (PSCs) are able to differentiate into several cell types, including pancreatic ß cells. Differentiation of pancreatic ß cells depends on certain transcription factors, which function in a coordinated way during pancreas development. The existing protocols for in vitro differentiation produce pancreatic ß cells, which are not highly responsive to glucose stimulation except after their transplantation into immune-compromised mice and allowing several weeks for further differentiation to ensure the maturation of these cells in vivo. Thus, although the substantial improvement that has been made for the differentiation of induced PSCs and embryonic stem cells toward pancreatic ß cells, several challenges still hindering their full generation. Here, we summarize recent advances in the differentiation of PSCs into pancreatic ß cells and discuss the challenges facing their differentiation as well as the different applications of these potential PSC-derived ß cells.

18.
Stem Cell Rev Rep ; 9(6): 764-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23955576

RESUMO

Embryonic stem (ES) cells are originated from the inner cell mass of a blastocyst stage embryo. They can proliferate indefinitely, maintain an undifferentiated state (self-renewal), and differentiate into any cell type (pluripotency). ES cells have an unusual cell cycle structure, consists mainly of S phase cells, a short G1 phase and absence of G1/S checkpoint. Cell division and cell cycle progression are controlled by mechanisms ensuring the accurate transmission of genetic information from generation to generation. Therefore, control of cell cycle is a complicated process, involving several signaling pathways. Although great progress has been made on the molecular mechanisms involved in the regulation of ES cell cycle, many regulatory mechanisms remain unknown. This review summarizes the current knowledge about the molecular mechanisms regulating the cell cycle of ES cells and describes the relationship existing between cell cycle progression and the self-renewal.


Assuntos
Ciclo Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Humanos , MicroRNAs/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Stem Cells Dev ; 21(8): 1264-71, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21846177

RESUMO

The identification of intrinsic factors required for propagation of self-renewing embryonic stem (ES) cells is important to improve the efficiency of expansion of ES cells for therapeutic purposes. Here, we report a novel role for natriuretic peptide receptor-C (NPR-C) in the survival of murine ES cells. We found that NPR-C was highly expressed in ES cells and was downregulated during ES cell differentiation. Knockdown of NPR-C in ES cells by using a small-interfering RNA resulted in apoptotic cell death, and the induction of p53 protein expression. Conversely, chemical inhibition of p53 by α-pifithrin significantly reduced apoptosis in NPR-C-deficient cells. cANF((4-23)), a selective NPR-C agonist, protected ES cells against oxidative stress-induced apoptosis, and blocked activation of p53 and Nanog suppression in the presence of DNA-damaging agents. Thus, NPR-C is required to control DNA damage-induced p53 levels to maintain ES cell self-renewal.


Assuntos
Apoptose , Citoproteção , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/farmacologia , Camundongos , Receptores do Fator Natriurético Atrial/antagonistas & inibidores , Receptores do Fator Natriurético Atrial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA