Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Neuroanat ; 137: 102412, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38460773

RESUMO

Organ damage brought on by ischemia is exacerbated by the reperfusion process. L-cysteine is a semi-essential amino acid that acts as a substrate for cystathionine-ß-synthase in the central nervous system. The aim of this study was to investigate the possible protective effects of L- cysteine against the structural and biochemical changes that occur in the rat sciatic nerve after ischemia reperfusion (I/R) and to address some of the underlying mechanisms of these effects. Rats were divided into 4 groups: sham, l-cysteine, I/R, and l-cysteine- I/R groups. Specimens of sciatic nerve were processed for biochemical, histological, and immunohistochemical assessment. The results showed in I/R group, a significant increase in malondialdehyde with a significant decrease in both Nuclear respiratory factor-1 (NRF1) and superoxide dismutase levels. Moreover, with histological alteration. There was a significant increase in the mean surface area fraction of anti-caspase immunopositive cells as well as a significantdecrease in mean surface area fraction of anti-CD 34 immunopositive cells. In contrast, the l-cysteine- I/R group showed amelioration of these biochemical, structural, and immunohistochemical changes. To the best of our knowledge, this is the first study showed the protective effects of l-cysteine in sciatic nerve I/R via NRF1and caspase 3 modulation as well as telocyte activation.


Assuntos
Caspase 3 , Cisteína , Ratos Wistar , Traumatismo por Reperfusão , Nervo Isquiático , Animais , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Cisteína/farmacologia , Masculino , Caspase 3/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Imuno-Histoquímica , Fator 1 Nuclear Respiratório/metabolismo , Modelos Animais de Doenças
2.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257358

RESUMO

A new class of benzimidazole-based derivatives (4a-j, 5, and 6) with potential dual inhibition of EGFR and BRAFV600E has been developed. The newly synthesized compounds were submitted for testing for antiproliferative activity against the NCI-60 cell line. All newly synthesized compounds 4a-j, 5, and 6 were selected for testing against a panel of sixty cancer cell lines at a single concentration of 10 µM. Some compounds tested demonstrated remarkable antiproliferative activity against the cell lines tested. Compounds 4c, 4e, and 4g were chosen for five-dose testing against 60 human tumor cell lines. Compound 4c demonstrated strong selectivity against the leukemia subpanel, with a selectivity ratio of 5.96 at the GI50 level. The most effective in vitro anti-cancer assay derivatives (4c, 4d, 4e, 4g, and 4h) were tested for EGFR and BRAFV600E inhibition as potential targets for antiproliferative action. The results revealed that compounds 4c and 4e have significant antiproliferative activity as dual EGFR/BRAFV600E inhibitors. Compounds 4c and 4e induced apoptosis by increasing caspase-3, caspase-8, and Bax levels while decreasing the anti-apoptotic Bcl2 protein. Moreover, molecular docking studies confirmed the potential of compounds 4c and 4e to act as dual EGFR/BRAFV600E inhibitors.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas B-raf , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas B-raf/genética , Antineoplásicos/farmacologia , Antinematódeos , Linhagem Celular Tumoral , Benzimidazóis/farmacologia , Receptores ErbB
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 771-788, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36480028

RESUMO

Acute lung injury is a serious condition accounting for the majority of acute respiratory failure. Bleomycin (BLM) is an antibiotic that was first described as a chemotherapeutic agent. 3,3'-methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) was reported to have anti-inflammatory, anti-apoptotic, and anti-oxidative properties. The current work aimed to assess the possible protective effects and the mechanism of protection of 3,3'-methylenebis-(1-ethyl-4-hydroxyquinolin-2(1H)-one) on BLM-induced lung injury in addition to the effect and underlying mechanisms of nuclear factor-erythroid-related factor 2 pathway against this injury. Rats were equally divided into four groups: control group, BLM group, 1-ethyl-4-hydroxyquinolin-2(1H)-one-treated group, and BLM with 1-ethyl-4-hydroxyquinolin-2(1H)-one-treated group. At the end of the work, the blood samples were proceeded for biochemical study. Lung specimens were obtained for biochemical, histological, and immunohistochemical study. The results exhibited a significant increase in both malondialdehyde and tumor necrotic factor-α with a significant decrease in glutathione, superoxide dismutase, IL 10, surfactant protein A, and nuclear factor erythroid 2-related factor 2 in BLM group. The lung histological results showed various morphological changes in the form of disturbed architecture, inflammatory cell infiltration, and intraluminal debris. This group also displayed a significant increase in the mean surface area fraction of anti-cleaved caspase 3, while group IV exhibited amelioration in the previously mentioned parameters and histological alternations that were induced by BLM. It could be concluded that 3,3'-methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) has anti-oxidative, anti-inflammatory, and anti-apoptotic protective effects against BLM-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Fibrose Pulmonar , Ratos , Masculino , Animais , Bleomicina/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Pulmão , Lesão Pulmonar Aguda/patologia
4.
Bioorg Chem ; 99: 103767, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32325332

RESUMO

Bis-hydrazides 13a-h were designed and synthesized as potential tubulin inhibitors selectively targeting the colchicine site between α- and ß-tubulin subunits. The newly designed ring-B substituents were assisted at their ends by 'anchor groups' which are expected to exert binding interaction(s) with new additional amino acid residues in the colchicine site (beyond those amino acids previously reported to interact with reference inhibitors as CA-4 and colchicine). Conformational flexibility of bis-hydrazide linker assisted these 'extra-binding' properties through reliving ligands' strains in the final ligand-receptor complexes. Compound 13f displayed the most promising computational and biological study results in the series: MM/GBSA binding energy of -62.362 kcal/mol (extra-binding to Arg α:221, Thr ß:353 & Lys ß:254); 34% NCI-H522 cells' death (at 10 µM), IC50 = 0.073 µM (MTT assay); significant cell cycle arrest at G2/M phase; 11.6% preG1 apoptosis induction and 83.1% in vitro tubulin inhibition (at concentration = IC50). Future researchers in bis-hydrazide tubulin inhibitors are advised to consider the 2-chloro-N-(4-substituted-phenyl)acetamide derivatives as compound 13f due to extra-binding properties of their ring B.


Assuntos
Antineoplásicos/farmacologia , Colchicina/farmacologia , Descoberta de Drogas , Hidrazinas/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Colchicina/síntese química , Colchicina/química , Desenho Assistido por Computador , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Estrutura Molecular , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Células Tumorais Cultivadas
5.
Bioorg Chem ; 85: 585-599, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30878891

RESUMO

A large number of natural products containing the propellane scaffold have been reported to exhibit cytotoxicity against several cancers; however, their mechanism of action is still unknown. Anticancer drugs targeting DNA are mainly composed of small planar molecule/s that can interact with the DNA helix, causing DNA malfunction and cell death. The aim of this study was to design and synthesize propellane derivatives that can act as DNA intercalators and/or groove binders. The unique structure of the propellane derivatives and their ability to display planar ligands with numerous possible geometries, renders them potential starting points to design new drugs targeting DNA in cancer cells. New substituted furo-imidazo[3.3.3]propellanes were synthesized via the reaction of substituted alkenylidene-hydrazinecarbothioamides with 2-(1,3-dioxo-2,3-dihydro-1H-2-ylidene)propanedinitrile in tetrahydrofuran at room temperature. The structures of the products were confirmed by a combination of elemental analysis, NMR, ESI-MS, IR and single crystal X-ray analysis. Interestingly, 5c, 5d and 5f showed an ability to interact with Calf Thymus DNA (CT-DNA). Their DNA-binding mode was investigated using a combination of absorption spectroscopy, DNA melting, viscosity, CD spectroscopy measurements, as well as competitive binding studies with several dyes. Their cytotoxicity was evaluated against the NCI-60 panel of cancer cell lines. 5c, 5d and 5f exhibited similar anti-proliferative activity against the A549 non-small cell lung cancer (NSCLC) cell line. Further mechanistic studies revealed their ability to induce DNA damage in the A549 cell line, as well as apoptosis, evidenced by elevated Annexin V expression, enhanced caspase 3/7 activation and PARP cleavage. In this study, we present the potential for designing novel propellanes to provoke cytotoxic activity, likely through DNA binding-induced DNA damage and apoptosis.


Assuntos
Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , DNA/metabolismo , Furanos/farmacologia , Imidazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/síntese química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Linhagem Celular Tumoral , DNA/química , Dano ao DNA/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/síntese química , Furanos/metabolismo , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Conformação de Ácido Nucleico/efeitos dos fármacos , Temperatura de Transição , Viscosidade
6.
Curr Med Chem ; 26(17): 3132-3149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29446718

RESUMO

Fluoroquinolones represent an interesting synthetic class of antimicrobial agents with broad spectrum and potent activity. Since the discovery of nalidixic acid, the prototype of quinolones, several structural modifications to the quinolone nucleus have been carried out for improvement of potency, spectrum of activity, and to understand their structure activity relationship (SAR). The C-7 substituent was reported to have a major impact on the activity. Accordingly, Substitution at C-7 or its N-4-piperazinyl moiety was found to affect potency, bioavailability, and physicochemical properties. Also, it can increase the affinity towards mammalian topoisomerases that may shift quinolones from antibacterial to anticancer candidates. Moreover, the presence of DNA topoisomerases in both eukaryotic and prokaryotic cells makes them excellent targets for chemotherapeutic intervention in antibacterial and anticancer therapies. Based on this concept, several fluoroquionolones derivatives have been synthesized and biologically evaluated as antibacterial, antituberculosis, antiproliferative, antiviral and antifungal agents. This review is an attempt to focus on the therapeutic prospects of fluoroquinolones with an updated account on their atypical applications such as antitubercular and anticancer activities.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Fungos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Fluoroquinolonas/síntese química , Fluoroquinolonas/química , Humanos , Estrutura Molecular , Neoplasias/patologia
7.
Bioorg Med Chem ; 24(19): 4636-4646, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27555286

RESUMO

New N-4-piperazinyl derivatives of ciprofloxacin 2a-g were prepared and tested for their cytotoxic activity. The primary in vitro one dose anticancer assay experienced promising cytotoxic activity against different cancer cell lines especially non-small cell lung cancer. Independently, compounds 2b, 2d, 2f and 2g showed anticancer activity against human non-small cell lung cancer A549 cells (IC50=14.8, 24.8, 23.6 and 20.7µM, respectively) compared to the parent ciprofloxacin (IC50 >100µM) and doxorubicin as a positive control (IC50=1µM). The flow cytometric analysis for 2b showed dose dependent G2/M arrest in A549 cells. Also, 2b increased the expression of p53 and p21 and decreased the expression of cyclin B1 and Cdc2 proteins in A549 cells without any effect on the same proteins expression in WI-38 cells. Specific inhibition of p53 by pifithrin-α reversed the G2/M phase arrest induced by the 2b compound, suggesting contribution of p53 to increase. Taken together, 2b induced G2/M phase arrest via p53/p21 dependent pathway. The results indicate that 2b can be used as a lead compound for further development of new derivatives against non-small cell lung cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fase G2/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA