Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004443

RESUMO

Cancer is a major disease that threatens human health all over the world. Intervention and prevention in premalignant processes are successful ways to prevent cancer from striking. On the other hand, the marine ecosystem is a treasure storehouse of promising bioactive metabolites. The use of such marine products can be optimized by selecting a suitable nanocarrier. Therefore, epi-obtusane, previously isolated from Aplysia oculifera, was investigated for its potential anticancer effects toward cervical cancer through a series of in vitro assays in HeLa cells using the MTT assay method. Additionally, the sesquiterpene was encapsulated within a liposomal formulation (size = 130.8 ± 50.3, PDI = 0.462, zeta potential -12.3 ± 2.3), and the antiproliferative potential of epi-obtusane was investigated against the human cervical cancer cell line HeLa before and after encapsulation with liposomes. Epi-obtusane exhibited a potent effect against the HeLa cell line, while the formulated molecule with liposomes increased the in vitro antiproliferative activity. Additionally, cell cycle arrest analysis, as well as the apoptosis assay, performed via FITC-Annexin-V/propidium iodide double staining (flow cytofluorimetry), were carried out. The pharmacological network enabled us to deliver further insights into the mechanism of epi-obtusane, suggesting that STAT3 might be targeted by the compound. Moreover, molecular docking showed a comparable binding score of the isolated compound towards the STAT3 SH2 domain. The targets possess an anticancer effect through the endometrial cancer pathway, regulation of DNA templated transcription, and nitric oxide synthase, as mentioned by the KEGG and ShinyGo 7.1 databases.

2.
Nat Prod Res ; 36(24): 6464-6469, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35175884

RESUMO

Soft corals and associated microorganisms are known to produce leads for anticancer drugs. Keeping this in mind, Nephthea sp.; a Red Sea soft coral was investigated for the first time using the OSMAC approach. Two isolates, Streptomyces sp. UR63 and Micrococcus sp. UR67 were identified. Their extracts revealed the presence of alkaloids, macrolides, quinones, fatty acids and terpenoids. Further comparison through a set of multivariate data analyses revealed their unique chemical profiles. The extracts displayed inhibitory potencies against HepG-2, Caco-2 and MCF-7 tumor cell lines with IC50 values ranging from 11.4 to 38.7 µg/mL when compared with the positive control, doxorubicin. The study not only highlights the cytotoxic potential of soft coral-associated actinomycetes but also shows the advantage of using the OSMAC approach in this regard.


Assuntos
Actinobacteria , Antozoários , Antineoplásicos , Humanos , Animais , Actinomyces , Células CACO-2 , Antozoários/química , Antineoplásicos/química
3.
RSC Adv ; 11(38): 23654-23663, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479817

RESUMO

Soft corals belonging to the family Nephtheidae have been appreciated as marine sources of diverse metabolites with promising anticancer potential. In view of that, the current work investigates the anti-proliferative potential of the crude extract, different fractions, and green synthesized silver nanoparticles (AgNPs) of the Red Sea soft coral, Nephthea sp. against a panel of tumor cell lines. The metabolic pool of the soft coral under study was also explored via an LC-HR-ESI-MS metabolomics approach, followed by molecular docking analysis of the characterized metabolites against the target proteins, EGFR, VEGFR, and HER2 (erbB2) that are known to be involved in cancer cell proliferation, growth, and survival. Overall, the n-butanol fraction of Nephthea sp. exhibited the highest inhibitory activities against MCF7 (breast cancer) and A549 (lung cancer) cell lines, with interesting IC50 values of 2.30 ± 0.07 and 3.12 ± 0.10 µg ml-1, respectively, whereas the maximum growth inhibition of HL60 (leukemia) cells was recorded by the total extract (IC50 = 2.78 ± 0.09 µg ml-1). More interestingly, the anti-proliferative potential of the total soft coral extract was evidently improved when packaged in the form of biogenic AgNPs, particularly against A549 and MCF7 tumor cells, showing IC50 values of 0.72 ± 0.06 and 9.32 ± 0.57 µg ml-1, respectively. On the other hand, metabolic profiling of Nephthea sp. resulted in the annotation of structurally diverse terpenoids, some of which displayed considerable binding affinities and molecular interactions with the studied target proteins, suggesting their possible contribution to the anti-proliferative properties of Nephthea sp. via inhibition of tyrosine kinases, especially the EGFR type. Taken together, the present findings highlighted the relevance of Nephthea sp. to future anticancer drug discovery and provided a base for further work on the green synthesis of a range of bioactive NPs from marine soft corals.

4.
Chem Biodivers ; 16(6): e1800692, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30957385

RESUMO

Marine natural products display a wide range of biological activities, which play a vital role in the innovation of lead compounds for the drug development. Soft corals have been ranked at the top in regard to the discovery of bioactive metabolites with potential pharmaceutical applications. Many of the isolated cembranoids revealed diverse biological activities, such as anticancer, antidiabetic and anti-osteoporosis. Likewise, sterols from soft corals exhibited interesting biological potential as anti-inflammatory, antituberculosis and anticancer. Consequently, investigating marine soft corals will definitely lead to the discovery of a large number of chemically varied secondary metabolites with countless bioactivities for possible applications in medicine and pharmaceutical industry. This review provides a complete survey of all metabolites isolated from the family Nephtheidae, from 2011 until November 2018, along with their natural sources and biological potential whenever possible.


Assuntos
Antozoários/química , Produtos Biológicos/química , Animais , Antozoários/metabolismo , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Esteroides/química , Esteroides/isolamento & purificação , Esteroides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA