Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956500

RESUMO

Many embryogenic systems have been designed to generate somatic embryos (SEs) with the morphology, biochemistry, and vigor uniformity of zygotic embryos (ZEs). During the current investigation, several antioxidants were added to the maturation media of the developing somatic embryos of date palm. Explant material was a friable embryogenic callus that was placed in maturation media containing ABA at 0.5 mg L-1, 5 g L-1 polyethylene glycol, and 10 g L-1 phytagel. Furthermore, α-tocopherol or reduced glutathione (GSH) were used separately at (25 and 50 mg L-1). These treatments were compared to a widely used date palm combination of reduced ascorbic acid (ASC) and citric acid at 150 and 100 mg L-1, respectively, and to the medium free from any antioxidants. The relative growth percentage of embryogenic callus (EC), globularization degree, differentiation%, and SEs number were significantly increased with GSH (50 mg L-1). Additionally, the latter treatment significantly enhanced the conversion% of SEs and the number of secondary somatic embryos (SSEs). ASC and citric acid treatment increased leaf length, while α-tochopherol (50 mg L-1) elevated the number of leaves plantlet-1. GSH at 50 mg L-1 catalyzed the activities of polyphenol oxidase (PPO) and peroxidase (POD) in EC and enhanced the accumulation of proteins in SEs.

2.
Plants (Basel) ; 11(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736758

RESUMO

Plant growth regulators can affect the primary and secondary metabolites of various plant species. However, the effect of paclobutrazol (PBZ) on the composition of lavender oil, especially related to the terpenoid pathway, is still unclear in literatures. In this study, the effect of PBZ as a foliar spray (0.200, 400 and 600 ppm) on the vegetative growth, phytochemical content, and both antioxidant and antimicrobial properties of lavender oil were investigated. The results indicated that all examined PBZ treatments led to a significant (p ≤ 0.05) decrease in growth parameters compared to the untreated plants. Meanwhile, the yield of essential oil was significantly decreased by the treatment of PBZ at 200 ppm compared to the control. In contrast, applied-PBZ significantly enhanced the chlorophyll content and displayed a marked change in the composition of the essential oil. This change included an obvious and significant increase in 3-carene, eucalyptol, γ-terpinene, α-pinocarvone, caryophyllene, ß-vetivenene, ß-santalol, ledol, geranyl isovalerate, farnesol, caryophyllene oxide, and phytol percentage. Generally, the highest significant values were achieved by the treatment of 400 ppm compared to the other treatments. Furthermore, this treatment showed the highest free radical scavenging activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) by 13% over the control. Additionally, to determine the antimicrobial activities of the extracted oil, each treatment was examined against two strains of Gram positive bacteria (S. aureus and B. cereus), two strains of Gram negative bacteria (S. enteritidis and E. coli), and two fungal species (C. albicans and A. niger) represent the yeast modal and filamentous fungus, respectively. The findings demonstrated that all examined species were more sensitive to the oil that was extracted from lavender plants, treated with 400 ppm PBZ, compared to the other concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA