Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939855

RESUMO

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Assuntos
Proteínas de Transporte , Colestase , Nefropatias , Hepatopatias , Glicoproteínas de Membrana , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Camundongos , Animais , Colestase/complicações , Colestase/metabolismo , Rim/metabolismo , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Ductos Biliares/metabolismo , Hepatopatias/metabolismo , Sódio
2.
J Lipid Res ; 60(9): 1590-1602, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31363040

RESUMO

The combination of daunorubicin (dnr) and cytarabine (Ara-C) is a cornerstone of treatment for acute myelogenous leukemia (AML); resistance to these drugs is a major cause of treatment failure. Ceramide, a sphingolipid (SL), plays a critical role in cancer cell apoptosis in response to chemotherapy. Here, we investigated the effects of chemotherapy selection pressure with Ara-C and dnr on SL composition and enzyme activity in the AML cell line HL-60. Resistant cells, those selected for growth in Ara-C- and dnr-containing medium (HL-60/Ara-C and HL-60/dnr, respectively), demonstrated upregulated expression and activity of glucosylceramide synthase, acid ceramidase (AC), and sphingosine kinase 1 (SPHK1); were more resistant to ceramide than parental cells; and displayed sensitivity to inhibitors of SL metabolism. Lipidomic analysis revealed a general ceramide deficit and a profound upswing in levels of sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) in HL-60/dnr cells versus parental and HL-60/Ara-C cells. Both chemotherapy-selected cells also exhibited comprehensive upregulations in mitochondrial biogenesis consistent with heightened reliance on oxidative phosphorylation, a property that was partially reversed by exposure to AC and SPHK1 inhibitors and that supports a role for the phosphorylation system in resistance. In summary, dnr and Ara-C selection pressure induces acute reductions in ceramide levels and large increases in S1P and C1P, concomitant with cell resilience bolstered by enhanced mitochondrial remodeling. Thus, strategic control of ceramide metabolism and further research to define mitochondrial perturbations that accompany the drug-resistant phenotype offer new opportunities for developing therapies that regulate cancer growth.


Assuntos
Mitocôndrias/metabolismo , Esfingolipídeos/metabolismo , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ceramidases/metabolismo , Ceramidas/metabolismo , Ácidos Graxos Insaturados/farmacologia , Glucosiltransferases/metabolismo , Células HL-60 , Humanos , Immunoblotting , Lisofosfolipídeos/metabolismo , Espectrometria de Massas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingosina/análogos & derivados , Esfingosina/metabolismo
3.
Exp Cell Res ; 381(2): 256-264, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31112736

RESUMO

Acute myelogenous leukemia (AML) is a hematological malignancy marked by the accumulation of large numbers of immature myeloblasts in bone marrow. The overall prognosis in AML is poor; hence, there is a pressing need to improve treatment. Although the sphingolipid (SL) ceramide demonstrates known cancer suppressor properties, it's mechanism of action is multifaceted. Our studies in leukemia and other cancers have demonstrated that when combined with the antiestrogen, tamoxifen, the apoptosis-inducting effect of ceramide is greatly enhanced. The goal of the present study was to establish whether a ceramide-tamoxifen regimen also affects autophagic-driven cellular responses in leukemia. Using the human AML cell line KG-1, we demonstrate that, unlike exposure to the single agents, combination C6-ceramide-tamoxifen upregulated LC3-II expression, inhibited the mTOR signaling pathway, and synergistically induced KG-1 cell death in an Atg5-dependent manner. In addition, colocalization of autophagosome and mitochondria, indicative of mitophagosome formation and mitophagy, was observed. Versatility of the drug regimen was confirmed by experiments in MV4-11 cells, a FLT3-ITD AML mutant. These results indicate that the C6-ceramide-tamoxifen regimen plays a pivotal role inducing autophagy in AML, and thus constitutes a novel therapeutic design.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ceramidas/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Mitofagia/fisiologia , Tamoxifeno/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/fisiologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Mitofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
4.
Biomed Pharmacother ; 96: 417-425, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29031200

RESUMO

Oleanolic acid derivatives exhibit potent anticancer activities against numerous types of cancer. However, the antitumor activity of oleanolic acid methylester (OAME), an oleanolic acid derivative, against prostate cancer has not been studied. Hence, the present work was conducted to study the anticancer activities of OAME. Viability assay showed that treatment of cancer cells with OAME induced a significant cell death in concentration- and time-dependent manner. Of note, OAME displayed a selective cytotoxicity against cancer cells compared to normal epithelial cells. Cells treated with OAME exhibited cell cycle arrest at both G1 and G2. Apoptotic induction potential of OAME was demonstrated using Annexin V assay, caspase activation, and DNA fragmentation methods Mechanistically, the results revealed that OAME strongly impacted the intrinsic apoptotic pathway in a concentration-dependent manner, as demonstrated by loss of mitochondrial membrane potential and release cytochrome c into the cytosol. ROS scavenger completely abrogated OAME-induced cell death. In vivo, OAME exerted concentration- dependent antiproliferative effect, associated with a significant level of apoptosis, potent antiangiogenic activity, and downregulation of survivin. This study provides significant insight into the therapeutic activities of OAME against prostate cancer in vitro and in vivo, suggesting that OAME might serve as a promising lead compound to treat hormonal-resistant prostate cancer.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Citotoxinas/farmacologia , Ácido Oleanólico/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Embrião de Galinha , Citotoxinas/química , Relação Dose-Resposta a Droga , Humanos , Masculino , Ácido Oleanólico/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Biochem Pharmacol ; 85(8): 1057-65, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23353700

RESUMO

Poor prognosis in patients with later stage colorectal cancer (CRC) necessitates the search for new treatment strategies. Ceramide, because of its role in orchestrating death cascades in cancer cells, is a versatile alternative. Ceramide can be generated by exposure to chemotherapy or ionizing radiation, or it can be administered in the form of short-chain analogs (C6-ceramide). Because intracellular P-glycoprotein (P-gp) plays a role in catalyzing the conversion of ceramide to higher sphingolipids, we hypothesized that administration of P-gp antagonists with C6-ceramide would magnify cell death cascades. Human CRC cell lines were employed, HCT-15, HT-29, and LoVo. The addition of either tamoxifen, VX-710, verapamil, or cyclosporin A, antagonists of P-gp, enhanced C6-ceramide cytotoxicity in all cell lines. In depth studies with C6-ceramide and tamoxifen in LoVo cells showed the regimen induced PARP cleavage, caspase-dependent apoptosis, mitochondrial membrane permeabilization (MMP), and cell cycle arrest at G1 and G2. At the molecular level, the regimen, but not single agents, induced time-dependent upregulation of tumor suppressor protein p53; however, introduction of a p53 inhibitor staved neither MMP nor apoptosis. Nanoliposomal formulations of C6-ceramide and tamoxifen were also effective, yielding synergistic cell kill. We conclude that tamoxifen is a favorable adjuvant for enhancing C6-ceramide cytotoxicity in CRC, and demonstrates uniquely integrated effects. The high frequency of expression of P-gp in CRC presents an adventitious target for complementing ceramide-based therapies, a strategy that could hold promise for treatment of resistant disease.


Assuntos
Antineoplásicos Hormonais/farmacologia , Ceramidas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Proteína Supressora de Tumor p53/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ceramidas/metabolismo , Sinergismo Farmacológico , Humanos , Piperidinas/farmacologia , Piridinas/farmacologia , Tamoxifeno/farmacologia
6.
Cancer Chemother Pharmacol ; 71(3): 635-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23263160

RESUMO

PURPOSE: Acid ceramidase (AC) occupies an important place in the control of cancer cell proliferation. We tested the influence of AC inhibition on the effects of PSC 833, a P-glycoprotein antagonist with potent ceramide-generating capacity, to determine whether AC could be a therapeutic target in pancreatic cancer. METHODS: Ceramide metabolism was followed using (3)H-palmitate, and molecular species were determined by mass spectroscopy. Apoptosis was measured by DNA fragmentation, autophagy by acridine orange staining, and cell cycle was assessed by flow cytometry and RB phosphorylation. AC was measured in intact cells using fluorescent substrate. RESULTS: Exposure of human PANC-1 or MIA-PaCa-2 cells to PSC 833 promoted increases in de novo (dihydro)ceramides, (dihydro)glucosylceramides, and (dihydro)sphingomyelins, demarking ceramide generation and robust metabolism. Despite the multifold increases in (dihydro)ceramide levels, cells were refractory to PSC 833. However, PSC 833 produced a dose-dependent decrease in DNA synthesis and dose- and time-dependent decreases in RB phosphorylation, consistent with cell cycle arrest as demonstrated at G1. Cytostatic effects of PSC 833 were converted to cytotoxic end-point by acid ceramidase inhibition. Cytotoxicity was accompanied by formation of acridine orange-stained acidic vesicles and an increase in LC3 expression, indicative of autophagic response. Cell death was not reversed by preexposure to myriocin, which blocks PSC 833-induced ceramide generation. CONCLUSION: Although the role of ceramide in end-point cytotoxicity is unclear, our results suggest that acid ceramidase is a viable target in pancreatic cancer. We propose that AC inhibition will be effective in concert with other anticancer therapies.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Ceramidase Ácida/metabolismo , Antineoplásicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Laranja de Acridina , Amidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Cromatografia em Camada Fina , Ciclosporinas/farmacologia , Fragmentação do DNA/efeitos dos fármacos , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , Determinação de Ponto Final , Ácidos Graxos Insaturados/farmacologia , Citometria de Fluxo , Humanos , Espectrometria de Massas , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA