Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Neurodegener ; 12(1): 26, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217980

RESUMO

BACKGROUND: The clinical utility and safety of sargramostim has previously been reported in cancer, acute radiation syndrome, autoimmune disease, inflammatory conditions, and Alzheimer's disease. The safety, tolerability, and mechanisms of action in Parkinson's disease (PD) during extended use has not been evaluated. METHODS: As a primary goal, safety and tolerability was assessed in five PD patients treated with sargramostim (Leukine®, granulocyte-macrophage colony-stimulating factor) for 33 months. Secondary goals included numbers of CD4+ T cells and monocytes and motor functions. Hematologic, metabolic, immune, and neurological evaluations were assessed during a 5-day on, 2-day off therapeutic regimen given at 3 µg/kg. After 2 years, drug use was discontinued for 3 months. This was then followed by an additional 6 months of treatment. RESULTS: Sargramostim-associated adverse events included injection-site reactions, elevated total white cell counts, and bone pain. On drug, blood analyses and metabolic panels revealed no untoward side effects linked to long-term treatment. Unified Parkinson's Disease Rating Scale scores remained stable throughout the study while regulatory T cell number and function were increased. In the initial 6 months of treatment, transcriptomic and proteomic monocyte tests demonstrated autophagy and sirtuin signaling. This finding paralleled anti-inflammatory and antioxidant activities within both the adaptive and innate immune profile arms. CONCLUSIONS: Taken together, the data affirmed long-term safety as well as immune and anti-inflammatory responses reflecting clinical stability in PD under the sargramostim treatment. Confirmation in larger patient populations is planned in a future phase II evaluation. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03790670, Date of Registration: 01/02/2019, URL: https://clinicaltrials.gov/ct2/show/NCT03790670?cond=leukine+parkinson%27s&draw=2&rank=2 .


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Doença de Parkinson , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Proteômica , Biomarcadores
2.
Clin Transl Med ; 12(7): e958, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35802825

RESUMO

BACKGROUND: Dysregulation of innate and adaptive immunity heralds both the development and progression of Parkinson's disease (PD). Deficits in innate immunity in PD are defined by impairments in monocyte activation, function, and pro-inflammatory secretory factors. Each influences disease pathobiology. METHODS AND RESULTS: To define monocyte biomarkers associated with immune transformative therapy for PD, changes in gene and protein expression were evaluated before and during treatment with recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF, sargramostim, Leukine® ). Monocytes were recovered after leukapheresis and isolation by centrifugal elutriation, before and 2 and 6 months after initiation of treatment. Transcriptome and proteome biomarkers were scored against clinical motor functions. Pathway enrichments from single cell-RNA sequencing and proteomic analyses from sargramostim-treated PD patients demonstrate a neuroprotective signature, including, but not limited to, antioxidant, anti-inflammatory, and autophagy genes and proteins (LRRK2, HMOX1, TLR2, TLR8, RELA, ATG7, and GABARAPL2). CONCLUSIONS: This monocyte profile provides an "early" and unique biomarker strategy to track clinical immune-based interventions, but requiring validation in larger case studies.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Doença de Parkinson , Biomarcadores , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Monócitos/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Proteômica , Proteínas Recombinantes , Resultado do Tratamento
3.
Front Immunol ; 12: 741502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671355

RESUMO

Host innate immune response follows severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and it is the driver of the acute respiratory distress syndrome (ARDS) amongst other inflammatory end-organ morbidities. Such life-threatening coronavirus disease 2019 (COVID-19) is heralded by virus-induced activation of mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells). MPs play substantial roles in aberrant immune secretory activities affecting profound systemic inflammation and end-organ malfunctions. All follow the presence of persistent viral components and virions without evidence of viral replication. To elucidate SARS-CoV-2-MP interactions we investigated transcriptomic and proteomic profiles of human monocyte-derived macrophages. While expression of the SARS-CoV-2 receptor, the angiotensin-converting enzyme 2, paralleled monocyte-macrophage differentiation, it failed to affect productive viral infection. In contrast, simple macrophage viral exposure led to robust pro-inflammatory cytokine and chemokine expression but attenuated type I interferon (IFN) activity. Both paralleled dysregulation of innate immune signaling pathways, specifically those linked to IFN. We conclude that the SARS-CoV-2-infected host mounts a robust innate immune response characterized by a pro-inflammatory storm heralding end-organ tissue damage.


Assuntos
COVID-19/virologia , Imunidade Inata , Macrófagos/virologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Proteoma , Proteômica , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Transdução de Sinais , Transcriptoma
4.
EBioMedicine ; 67: 103380, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34000620

RESUMO

BACKGROUND: Neuroinflammation plays a pathogenic role in Parkinson's disease (PD). Immunotherapies that restore brain homeostasis can mitigate neurodegeneration by transforming T cell phenotypes. Sargramostim has gained considerable attention as an immune transformer through laboratory bench to bedside clinical studies. However, its therapeutic use has been offset by dose-dependent adverse events. Therefore, we performed a reduced drug dose regimen to evaluate safety and to uncover novel disease-linked biomarkers during 5 days/week sargramostim treatments for one year. METHODS: Five PD subjects were enrolled in a Phase 1b, unblinded, open-label study to assess safety and tolerability of 3 µg/kg/day sargramostim. Complete blood counts and chemistry profiles, physical examinations, adverse events (AEs), immune profiling, Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores, T cell phenotypes/function, DNA methylation, and gene and protein patterns were evaluated. FINDINGS: Sargramostim administered at 3 µg/kg/day significantly reduced numbers and severity of AEs/subject/month compared to 6 µg/kg/day treatment. While MDS-UPDRS Part III score reductions were recorded, peripheral blood immunoregulatory phenotypes and function were elevated. Hypomethylation of upstream FOXP3 DNA elements was also increased. INTERPRETATION: Long-term sargramostim treatment at 3 µg/kg/day is well-tolerated and effective in restoring immune homeostasis. There were decreased numbers and severity of AEs and restored peripheral immune function coordinate with increased numbers and function of Treg. MDS-UPDRS Part III scores did not worsen. Larger patient numbers need be evaluated to assess conclusive drug efficacy (ClinicalTrials.gov NCT03790670). FUNDING: The research was supported by community funds to the University of Nebraska Foundation and federal research support from 5 R01NS034239-25.


Assuntos
Antiparkinsonianos/efeitos adversos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Idoso , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/uso terapêutico , Biomarcadores/análise , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA