Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 18(1): 97, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111016

RESUMO

BACKGROUND: Regulatory T cells (Tregs) maintain immune tolerance. While Treg-mediated neuroprotective activities are now well-accepted, the lack of defined antigen specificity limits their therapeutic potential. This is notable for neurodegenerative diseases where cell access to injured brain regions is required for disease-specific therapeutic targeting and improved outcomes. To address this need, amyloid-beta (Aß) antigen specificity was conferred to Treg responses by engineering the T cell receptor (TCR) specific for Aß (TCRAß). The TCRAb were developed from disease-specific T cell effector (Teff) clones. The ability of Tregs expressing a transgenic TCRAß (TCRAß -Tregs) to reduce Aß burden, transform effector to regulatory cells, and reverse disease-associated neurotoxicity proved beneficial in an animal model of Alzheimer's disease. METHODS: TCRAß -Tregs were generated by CRISPR-Cas9 knockout of endogenous TCR and consequent incorporation of the transgenic TCRAb identified from Aß reactive Teff monoclones. Antigen specificity was confirmed by MHC-Aß-tetramer staining. Adoptive transfer of TCRAß-Tregs to mice expressing a chimeric mouse-human amyloid precursor protein and a mutant human presenilin-1 followed measured behavior, immune, and immunohistochemical outcomes. RESULTS: TCRAß-Tregs expressed an Aß-specific TCR. Adoptive transfer of TCRAß-Tregs led to sustained immune suppression, reduced microglial reaction, and amyloid loads. 18F-fluorodeoxyglucose radiolabeled TCRAß-Treg homed to the brain facilitating antigen specificity. Reduction in amyloid load was associated with improved cognitive functions. CONCLUSIONS: TCRAß-Tregs reduced amyloid burden, restored brain homeostasis, and improved learning and memory, supporting the increased therapeutic benefit of antigen specific Treg immunotherapy for AD.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas , Modelos Animais de Doenças , Camundongos Transgênicos , Presenilina-1/genética , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores
2.
J Control Release ; 348: 951-965, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738463

RESUMO

Transformation of CD4+ T cell effector to regulatory (Teff to Treg) cells have been shown to attenuate disease progression by restoring immunological balance during the onset and progression of neurodegenerative diseases. In our prior studies, we defined a safe and effective pathway to restore this balance by restoring Treg numbers and function through the daily administration of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These studies were conducted as a proof-of-concept testing in Parkinson's disease (PD) preclinical models and early phase I clinical investigations. In both instances, they served to ameliorate disease associated signs and symptoms. However, despite the recorded efficacy, the cytokine's short half-life, low bioavailability, and injection site reactions proved to be limitations for any broader use. To overcome these limitations, mRNA lipid nanoparticles encoding an extended half-life albumin-GM-CSF fusion protein were developed for both mouse (Msa-GM-CSF) and rat (Rsa-GM-CSF). These formulations were tested for immunomodulatory and neuroprotective efficacy using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and human wild-type alpha-synuclein (αSyn) overexpression preclinical models of PD. A single dose of the extended half-life mouse and rat mRNA lipid nanoparticles generated measurable GM-CSF plasma cytokine levels up to four days. Increased Treg frequency and function were associated with a resting microglial phenotype, nigrostriatal neuroprotection, and restoration of brain tissue immune homeostasis. These findings were substantively beyond the recorded efficacy of daily recombinant wild-type GM-CSF with a recorded half-life of six hours. Mechanistic evaluation of neuropathological transcriptional profiles performed in the disease-affected nigral brain region demonstrated an upregulation of neuroprotective CREB and synaptogenesis signaling and neurovascular coupling pathways. These findings highlight the mRNA-encoded albumin GM-CSF fusion protein modification linked to improvements in therapeutic efficacy. The improvements achieved were associated with the medicine's increased bioavailability. Taken together, the data demonstrate that mRNA LNP encoding the extended half-life albumin-GM-CSF fusion protein can serve as a benchmark for PD immune-based therapeutics. This is especially notable for improving adherence of drug regimens in a disease-affected patient population with known tremors and gait abnormalities.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Doença de Parkinson , Albuminas , Animais , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Meia-Vida , Humanos , Lipossomos , Camundongos , Nanopartículas , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , RNA Mensageiro , Ratos , Proteínas Recombinantes
3.
Noncoding RNA ; 8(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35076584

RESUMO

RNA interference (RNAi) molecules have tremendous potential for cancer therapy but are limited by insufficient potency after intravenous (IV) administration. We previously found that polymer complexes (polyplexes) formed between 3'-cholesterol-modified siRNA (Chol-siRNA) or DsiRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase RNAi potency against stably expressed LUC mRNA in primary syngeneic murine breast tumors after daily IV dosing. Chol-DsiRNA polyplexes, however, maintain LUC mRNA suppression for ~48 h longer after the final dose than Chol-siRNA polyplexes, which suggests that they are the better candidate formulation. Here, we directly compared the activities of Chol-siRNA polyplexes and Chol-DsiRNA polyplexes in primary murine 4T1 breast tumors against STAT3, a therapeutically relevant target gene that is overexpressed in many solid tumors, including breast cancer. We found that Chol-siSTAT3 polyplexes suppressed STAT3 mRNA in 4T1 tumors with similar potency (half-maximal ED50 0.3 mg/kg) and kinetics (over 96 h) as Chol-DsiSTAT3 polyplexes, but with slightly lower activity against total Stat3 protein (29% vs. 42% suppression) and tumor growth (11.5% vs. 8.6% rate-based T/C ratio) after repeated IV administration of equimolar, tumor-saturating doses every other day. Thus, both Chol-siRNA polyplexes and Chol-DsiRNA polyplexes may be suitable clinical candidates for the RNAi therapy of breast cancer and other solid tumors.

4.
J Neuroinflammation ; 18(1): 272, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798897

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aß) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS: In this report, we developed and characterized cloned lines of amyloid beta (Aß) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aß-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aß T cell epitope loaded haplotype-matched major histocompatibility complex II IAb (MHCII-IAb-KLVFFAEDVGSNKGA) tetramer binding. Aß-Th1 and Aß-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS: The propagated Aß-Th1 and Aß-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aß reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aß-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS: These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aß reactive Tregs.


Assuntos
Doença de Alzheimer/patologia , Linfócitos T CD4-Positivos/patologia , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/patologia , Animais , Transtornos Cognitivos/patologia , Transtornos Cognitivos/psicologia , Inflamação/genética , Camundongos , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/patologia
5.
Nanomedicine ; 33: 102363, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545405

RESUMO

RNA interference molecules have tremendous potential for cancer therapy but are limited by insufficient potency after i.v. administration. We previously found that Chol-DsiRNA polyplexes formed between cholesterol-modified dicer-substrate siRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase the activity of Chol-DsiRNA against a stably expressed reporter mRNA in primary murine syngeneic breast tumors after daily i.v. dosing. Here, we provide a more thorough preliminary preclinical study of Chol-DsiRNA polyplexes against the therapeutically relevant target protein, STAT3. We found that Chol-DsiSTAT3 polyplexes greatly increase plasma exposure, distribution, potency, and therapeutic activity of Chol-DsiSTAT3 in primary murine syngeneic 4T1 breast tumors after i.v. administration. Furthermore, inactive Chol-DsiCTRL polyplexes are well tolerated by healthy female BALB/c mice after chronic i.v. administration at 50 mg Chol-DsiCTRL/kg over 28 days. Thus, Chol-DsiRNA polyplexes may be a good candidate for Phase I clinical trials to improve the treatment of breast cancer and other solid tumors.


Assuntos
Neoplasias da Mama/terapia , RNA Helicases DEAD-box/genética , Polietilenoglicóis/química , Polilisina/análogos & derivados , RNA Interferente Pequeno/química , Terapêutica com RNAi/métodos , Ribonuclease III/genética , Animais , Linhagem Celular Tumoral , Colesterol/química , Feminino , Técnicas de Transferência de Genes , Humanos , Camundongos Endogâmicos BALB C , Micelas , Terapia de Alvo Molecular , Polilisina/química , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Distribuição Tecidual
6.
Biochimie ; 137: 132-138, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28288872

RESUMO

Differentiation of stem cells into insulin-producing cells (IPCs) suitable for therapeutic transplantation offers a desperately needed approach for the diabetic patients. Elucidation of the molecular mechanisms during the differentiation of mesenchymal stem cells (MSCs) into IPCs assists the successful production of IPCs and provides an important insight into the improvement of the role of MSCs as a therapeutic tool for diabetes mellitus (DM). The present study aimed to investigate the role of local renin-angiotensin system (RAS) on MSCs differentiation into IPCs by measuring the expression of local RAS in MSCs during the differentiation into IPCs and assessing the effect of angiotensin type 1 receptor (AT1R) blocker and angiotensin type 2 receptor (AT2R) blocker on the differentiation process. Our data showed that the differentiation of MSCs into IPCs was associated with an increase in cellular angiotensinogen, angiotensin-converting enzyme (ACE), renin, and AT2R expression and undetectable expression of AT1R. The net effect was an increase in cellular angiotensin II (Ang II) during the differentiation process. AT1R blockade allowed the differentiation of MSCs into IPCs, whereas AT2R blockade alone and blockade of both AT1R and AT2R inhibited the differentiation of MSCs into IPCs. Our data demonstrated an important role of local RAS in the regulation of MSCs differentiation into IPCs and that Ang II mainly orchestrates this role through AT2R activation.


Assuntos
Diferenciação Celular , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células-Tronco Mesenquimais/citologia , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Angiotensina II/metabolismo , Animais , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/metabolismo , Peptidil Dipeptidase A , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA