Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Nat Commun ; 14(1): 6328, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816864

RESUMO

Metabolic reprogramming is one of the hallmarks of tumorigenesis. Here, we show that nuclear myosin 1 (NM1) serves as a key regulator of cellular metabolism. NM1 directly affects mitochondrial oxidative phosphorylation (OXPHOS) by regulating mitochondrial transcription factors TFAM and PGC1α, and its deletion leads to underdeveloped mitochondria inner cristae and mitochondrial redistribution within the cell. These changes are associated with reduced OXPHOS gene expression, decreased mitochondrial DNA copy number, and deregulated mitochondrial dynamics, which lead to metabolic reprogramming of NM1 KO cells from OXPHOS to aerobic glycolysis.This, in turn, is associated with a metabolomic profile typical for cancer cells, namely increased amino acid-, fatty acid-, and sugar metabolism, and increased glucose uptake, lactate production, and intracellular acidity. NM1 KO cells form solid tumors in a mouse model, suggesting that the metabolic switch towards aerobic glycolysis provides a sufficient carcinogenic signal. We suggest that NM1 plays a role as a tumor suppressor and that NM1 depletion may contribute to the Warburg effect at the onset of tumorigenesis.


Assuntos
Glicólise , Fosforilação Oxidativa , Camundongos , Animais , Glicólise/fisiologia , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica/metabolismo , Miosinas/metabolismo
4.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010867

RESUMO

Poor outcomes associated with diffuse high-grade gliomas occur in both adults and children, despite substantial progress made in the molecular characterisation of the disease. Targeting the metabolic requirements of cancer cells represents an alternative therapeutic strategy to overcome the redundancy associated with cell signalling. Cholesterol is an integral component of cell membranes and is required by cancer cells to maintain growth and may also drive transformation. Here, we show that removal of exogenous cholesterol in the form of lipoproteins from culture medium was detrimental to the growth of two paediatric diffuse glioma cell lines, KNS42 and SF188, in association with S-phase elongation and a transcriptomic program, indicating dysregulated cholesterol homeostasis. Interrogation of metabolic perturbations under lipoprotein-deficient conditions revealed a reduced abundance of taurine-related metabolites and cholesterol ester species. Pharmacological reduction in intracellular cholesterol via decreased uptake and increased export was simulated using the liver X receptor agonist LXR-623, which reduced cellular viability in both adult and paediatric models of diffuse glioma, although the mechanism appeared to be cholesterol-independent in the latter. These results provide proof-of-principle for further assessment of liver X receptor agonists in paediatric diffuse glioma to complement the currently approved therapeutic regimens and expand the options available to clinicians to treat this highly debilitating disease.

5.
ACS Omega ; 7(25): 21473-21482, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35785302

RESUMO

The O-acetyl (or acetate) derivative of the Aspidosperma alkaloid Jerantinine A (JAa) elicits anti-tumor activity against cancer cell lines including mammary carcinoma cell lines irrespective of receptor status (0.14 < GI50 < 0.38 µM), targeting microtubule dynamics. By exploiting breast cancer cells' upregulated transferrin receptor 1 (TfR1) expression and apoferritin (AFt) recognition, we sought to develop an AFt JAa-delivery vehicle to enhance tumor-targeting and reduce systemic toxicity. Optimizing pH-mediated reassembly, ∼120 JAa molecules were entrapped within AFt. Western blot and flow cytometry demonstrate TfR1 expression in cancer cells. Enhanced internalization of 5-carboxyfluorescein-conjugated human AFt in SKBR3 and MDA-MB-231 cancer cells is observed compared to MRC5 fibroblasts. Accordingly, AFt-JAa delivers significantly greater intracellular JAa levels to SKBR3 and MDA-MB-231 cells than naked JAa (0.2 µM) treatment alone. Compared to naked JAa (0.2 µM), AFt-JAa achieves enhanced growth inhibition (2.5-14-fold; <0.02 µM < GI50 < 0.15 µM) in breast cancer cells; AFt-JAa treatment results in significantly reduced clonal survival, more profound cell cycle perturbation including G2/M arrest, greater reduction in cell numbers, and increased apoptosis compared to the naked agent (p < 0.01). Decreased PLK1 and Mcl-1 expression, together with the appearance of cleaved poly (ADP-ribose)-polymerase, corroborate the augmented potency of AFt-JAa. Hence, we demonstrate that AFt represents a biocompatible vehicle for targeted delivery of JAa, offering potential to minimize toxicity and enhance JAa activity in TfR1-expressing tumors.

6.
Sci Rep ; 11(1): 15908, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354095

RESUMO

While specific microRNA (miRNA) signatures have been identified in glioblastoma (GBM), the intratumour heterogeneity in miRNA expression has not yet been characterised. In this study, we reveal significant alterations in miRNA expression across three GBM tumour regions: the core, rim, and invasive margin. Our miRNA profiling analysis showed that miR-330-5p and miR-215-5p were upregulated in the invasive margin relative to the core and the rim regions, while miR-619-5p, miR-4440 and miR-4793-3p were downregulated. Functional analysis of newly identified miRNAs suggests their involvement in regulating lipid metabolic pathways. Subsequent liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectroscopy (LC-MS/MS) profiling of the intracellular metabolome and the lipidome of GBM cells with dysregulated miRNA expression confirmed the alteration in the metabolite levels associated with lipid metabolism. The identification of regional miRNA expression signatures may underlie the metabolic heterogeneity within the GBM tumour and understanding this relationship may open new avenues for the GBM treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/metabolismo , MicroRNAs/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Glioblastoma/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Espectrometria de Massas em Tandem/métodos , Transcriptoma/genética , Microambiente Tumoral/genética
7.
Metab Eng ; 67: 308-320, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245888

RESUMO

Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges.


Assuntos
Escherichia coli , Biologia de Sistemas , Escherichia coli/genética , Etilenos , Laboratórios , Engenharia Metabólica , Pseudomonas syringae/genética
8.
Metabolites ; 11(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919944

RESUMO

The integration of untargeted metabolomics and transcriptomics from the same population of cells or tissue enhances the confidence in the identified metabolic pathways and understanding of the enzyme-metabolite relationship. Here, we optimised a simultaneous extraction method of metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA (mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods, four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios): cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1); Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana, involving RNA extraction from the interphase of our established sequential solvent addition and shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Sequential/mirVana was applied to study a) the biological effect caused by acute serum starvation in BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite interactions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was sufficient for transcriptomics, in just 10 mg of tissue.

9.
Biomaterials ; 266: 120450, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096376

RESUMO

Mesenchymal stem cells are the focus of intense research in bone development and regeneration. The potential of microparticles as modulating moieties of osteogenic response by utilizing their architectural features is demonstrated herein. Topographically textured microparticles of varying microscale features are produced by exploiting phase-separation of a readily soluble sacrificial component from polylactic acid. The influence of varying topographical features on primary human mesenchymal stem cell attachment, proliferation and markers of osteogenesis is investigated. In the absence of osteoinductive supplements, cells cultured on textured microparticles exhibit notably increased expression of osteogenic markers relative to conventional smooth microparticles. They also exhibit varying morphological, attachment and proliferation responses. Significantly altered gene expression and metabolic profiles are observed, with varying histological characteristics in vivo. This study highlights how tailoring topographical design offers cell-instructive 3D microenvironments which allow manipulation of stem cell fate by eliciting the desired downstream response without use of exogenous osteoinductive factors.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA