Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 119(5): 1517-1529, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447610

RESUMO

PURPOSE: This study investigated how isoform switching affects the cellular response to ionizing radiation (IR), an understudied area despite its relevance to radiation therapy in cancer treatment. We aimed to identify changes in transcript isoform expression post-IR exposure and the proteins mediating these changes, with a focus on their potential to modulate radiosensitivity. METHODS AND MATERIALS: Using RNA sequencing, we analyzed the B-cell lines derived from 10 healthy individuals at 3 timepoints, applying the mixture of isoforms algorithm to quantify alternative splicing. We examined RNA binding protein motifs within the sequences of IR-responsive isoforms and validated the serine/arginine-rich splicing factor 1 (SRSF1) as a predominant mediator through RNA immunoprecipitation. We further investigated the effects of SRSF1 on radiosensitivity by RNA interference and by analyzing publicly available data on patients with cancer. RESULTS: We identified ∼1900 radiation-responsive alternatively spliced isoforms. Many isoforms were differentially expressed without changes in their overall gene expression. Over a third of these transcripts underwent exon skipping, while others used proximal last exons. These IR-responsive isoforms tended to be shorter transcripts missing vital domains for preventing apoptosis and promoting cell division but retaining those necessary for DNA repair. Our combined computational, genetic, and molecular analyses identified the proto-oncogene SRSF1 as a mediator of these radiation-induced isoform-switching events that promote apoptosis. After exposure to DNA double-strand break-inducing agents, SRSF1 expression decreased. A reduction in SRSF1 increased radiosensitivity in vitro and among patients with cancer. CONCLUSIONS: We establish a pivotal role for isoform switching in the cellular response to IR and propose SRSF1 as a promising biomarker for assessing radiation therapy effectiveness.


Assuntos
Processamento Alternativo , Isoformas de Proteínas , Proto-Oncogene Mas , Tolerância a Radiação , Radiação Ionizante , Fatores de Processamento de Serina-Arginina , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Humanos , Tolerância a Radiação/genética , Éxons
2.
Mol Cell Proteomics ; 21(11): 100410, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089194

RESUMO

Little is known about the pathways regulating MHC antigen presentation and the identity of treatment-specific T cell antigens induced by ionizing radiation. For this reason, we investigated the radiation-specific changes in the colorectal tumor cell proteome. We found an increase in DDX58 and ZBP1 protein expression, two nucleic acid sensing molecules likely involved in induction of the dominant interferon response signature observed after genotoxic insult. We further observed treatment-induced changes in key regulators and effector proteins of the antigen processing and presentation machinery. Differential regulation of MHC allele expression was further driving the presentation of a significantly broader MHC-associated peptidome postirradiation, defining a radiation-specific peptide repertoire. Interestingly, treatment-induced peptides originated predominantly from proteins involved in catecholamine synthesis and metabolic pathways. A nuanced relationship between protein expression and antigen presentation was observed where radiation-induced changes in proteins do not correlate with increased presentation of associated peptides. Finally, we detected an increase in the presentation of a tumor-specific neoantigen derived from Mtch1. This study provides new insights into how radiation enhances antigen processing and presentation that could be suitable for the development of combinatorial therapies. Data are available via ProteomeXchange with identifier PXD032003.


Assuntos
Apresentação de Antígeno , Proteoma , Proteoma/metabolismo , Peptídeos/metabolismo , Proteômica , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA