Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes Environ ; 45(1): 31, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993956

RESUMO

Aflatoxin B1 (AFB1) is a mycotoxin produced by several species of Aspergillus fungi which can cause liver cancer in animals and humans. This study aims to perform the risk assessment of AFB1 in herbal medicines and plant food supplements (PFS) in Malaysian market. A total of 31 herbal medicines and PFS were purchased through online platforms and over the counter using a targeted sampling strategy. Of 31 samples analysed using the ELISA method, 25 (80.6%) were contaminated with AFB1 at levels ranged from 0.275 to 13.941 µg/kg. The Benchmark Dose Lower Confidence level of 10 (BMDL10) of 63.46 ng/kg bw/day and the estimated dietary intake of the adult population ranged from 0.006 to 10.456 ng/kg bw/day were used to calculate the Margin of Exposure (MOE). The MOEs for 24 (96%) out of the 25 positive samples were lower than 10,000. The RISK21 matrix revealed that AFB1 exposure levels from herbal medicines and PFS differed greatly over the world. The calculated population risk of acquiring liver cancer from AFB1 exposure ranged from 0 to 0.261 cancers/100,000 populations/year and accounted for an estimated percentage of liver cancer incidence ranged from 0.002 to 4.149%. This study revealed a moderate risk of liver cancer attributable to AFB1 from herbal medicine and PFS among Malaysian populations and emphasised an urgency for risk management actions.

2.
J Appl Toxicol ; 40(12): 1647-1660, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33034907

RESUMO

Aristolochic acid I (AAI) is a well-known genotoxic kidney carcinogen. Metabolic conversion of AAI into the DNA-reactive aristolactam-nitrenium ion is involved in the mode of action of tumor formation. This study aims to predict in vivo AAI-DNA adduct formation in the kidney of rat, mouse and human by translating the in vitro concentration-response curves for AAI-DNA adduct formation to the in vivo situation using physiologically based kinetic (PBK) modeling-based reverse dosimetry. DNA adduct formation in kidney proximal tubular LLC-PK1 cells exposed to AAI was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. Subsequently, the in vitro concentration-response curves were converted to predicted in vivo dose-response curves in rat, mouse and human kidney using PBK models. Results obtained revealed a dose-dependent increase in AAI-DNA adduct formation in the rat, mouse and human kidney and the predicted DNA adduct levels were generally within an order of magnitude compared with values reported in the literature. It is concluded that the combined in vitro PBK modeling approach provides a novel way to define in vivo dose-response curves for kidney DNA adduct formation in rat, mouse and human and contributes to the reduction, refinement and replacement of animal testing.


Assuntos
Ácidos Aristolóquicos/toxicidade , Adutos de DNA/metabolismo , Rim/efeitos dos fármacos , Modelos Biológicos , Alternativas aos Testes com Animais , Animais , Cromatografia Líquida , Relação Dose-Resposta a Droga , Humanos , Rim/metabolismo , Rim/patologia , Células LLC-PK1 , Camundongos , Ratos , Espectrometria de Massas por Ionização por Electrospray , Suínos , Espectrometria de Massas em Tandem , Toxicocinética
3.
Int J Mol Sci ; 20(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487790

RESUMO

Benzimidazole derivatives have a diverse range of biological activities, including antiulcer, antihypertensive, antiviral, antifungal, anti-inflammatory, and anticancer. Despite these activities, previous studies have revealed that some of the derivatives can induce mutations. This study aimed to screen for potential mutagenic activities of novel benzimidazole derivatives 1-4 using the Ames test and to study their structure-activity relationship (SAR). An Ames test was carried out on two strains of Salmonella typhimurium (TA98 and TA100) in the absence and presence of metabolic activation. Genetic analysis was performed prior to the Ames test to determine the genotypes of the bacterial tester strains. Both bacterial strains showed dependency on histidine with the presence of rfa mutation, uvrB deletion, and plasmid pKM101. Further, all derivatives tested showed no mutagenic activity in the absence of metabolic activation in both tester strains. However, in the presence of metabolic activation, compound 1 appeared to induce mutation at 2.5 µg/plate when tested against the TA98 strain. These results suggest that the absence of the -OH group at the ortho-position over the phenyl ring might be the cause of increased mutagenic activity in compound 1. Additionally, the presence of mutagenic activity in compound 1 when it was metabolically activated indicates that this compound is a promutagen.


Assuntos
Benzimidazóis/química , Resistência Microbiana a Medicamentos/genética , Mutagênicos/química , Ativação Metabólica , Benzimidazóis/metabolismo , Benzimidazóis/toxicidade , Genótipo , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Relação Estrutura-Atividade
4.
Food Chem Toxicol ; 92: 104-16, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27016491

RESUMO

Aristolochic acids are naturally occurring nephrotoxins. This study aims to investigate whether physiologically based kinetic (PBK) model-based reverse dosimetry could convert in vitro concentration-response curves of aristolochic acid I (AAI) to in vivo dose response-curves for nephrotoxicity in rat, mouse and human. To achieve this extrapolation, PBK models were developed for AAI in these different species. Subsequently, concentration-response curves obtained from in vitro cytotoxicity models were translated to in vivo dose-response curves using PBK model-based reverse dosimetry. From the predicted in vivo dose-response curves, points of departure (PODs) for risk assessment could be derived. The PBK models elucidated species differences in the kinetics of AAI with the overall catalytic efficiency for metabolic conversion of AAI to aristolochic acid Ia (AAIa) being 2-fold higher for rat and 64-fold higher for mouse than human. Results show that the predicted PODs generally fall within the range of PODs derived from the available in vivo studies. This study provides proof of principle for a new method to predict a POD for in vivo nephrotoxicity by integrating in vitro toxicity testing with in silico PBK model-based reverse dosimetry.


Assuntos
Ácidos Aristolóquicos/toxicidade , Carcinógenos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Rim/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Simulação por Computador , Humanos , Rim/patologia , Cinética , Camundongos , Modelos Biológicos , Ratos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA