Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0282741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952491

RESUMO

The interaction between human Growth Hormone (hGH) and hGH Receptor (hGHR) has basic relevance to cancer and growth disorders, and hGH is the scaffold for Pegvisomant, an anti-acromegaly therapeutic. For the latter reason, hGH has been extensively engineered by early workers to improve binding and other properties. We are particularly interested in E174 which belongs to the hGH zinc-binding triad; the substitution E174A is known to significantly increase binding, but to now no explanation has been offered. We generated this and several computationally-selected single-residue substitutions at the hGHR-binding site of hGH. We find that, while many successfully slow down dissociation of the hGH-hGHR complex once bound, they also slow down the association of hGH to hGHR. The E174A substitution induces a change in the Circular Dichroism spectrum that suggests the appearance of coiled-coiling. Here we show that E174A increases affinity of hGH against hGHR because the off-rate is slowed down more than the on-rate. For E174Y (and certain mutations at other sites) the slowdown in on-rate was greater than that of the off-rate, leading to decreased affinity. The results point to a link between structure, zinc binding, and hGHR-binding affinity in hGH.


Assuntos
Hormônio do Crescimento Humano , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/metabolismo , Humanos , Substituição de Aminoácidos , Ligação Proteica/genética , Receptores da Somatotropina/metabolismo , Estrutura Secundária de Proteína/genética , Alanina/química , Alanina/genética , Ácido Glutâmico/química , Ácido Glutâmico/genética , Zinco/química , Sequência Conservada , Sequência de Aminoácidos
2.
Anal Chem ; 94(28): 10054-10061, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35786874

RESUMO

High-quality affinity probes are critical for sensitive and specific protein detection, in particular for detection of protein biomarkers in the early phases of disease development. Proximity extension assays (PEAs) have been used for high-throughput multiplexed protein detection of up to a few thousand different proteins in one or a few microliters of plasma. Clonal affinity reagents can offer advantages over the commonly used polyclonal antibodies (pAbs) in terms of reproducibility and standardization of such assays. Here, we explore nanobodies (Nbs) as an alternative to pAbs as affinity reagents for PEA. We describe an efficient site-specific approach for preparing high-quality oligo-conjugated Nb probes via enzyme coupling using Sortase A (SrtA). The procedure allows convenient removal of unconjugated affinity reagents after conjugation. The purified high-grade Nb probes were used in PEA, and the reactions provided an efficient means to select optimal pairs of binding reagents from a group of affinity reagents. We demonstrate that Nb-based PEA (nano-PEA) for interleukin-6 (IL6) detection can augment assay performance, compared to the use of pAb probes. We identify and validate Nb combinations capable of binding in pairs without competition for IL6 antigen detection by PEA.


Assuntos
Anticorpos de Domínio Único , Anticorpos , Indicadores e Reagentes , Interleucina-6 , Oligonucleotídeos , Reprodutibilidade dos Testes
3.
Nat Cancer ; 3(2): 156-172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35228749

RESUMO

The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.


Assuntos
Aminoidrolases , Leucemia Mieloide Aguda , Aminoidrolases/genética , Humanos , Hidrolases , Leucemia Mieloide Aguda/tratamento farmacológico , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Enzimas Multifuncionais/genética , Timidina
4.
J Am Chem Soc ; 144(7): 2905-2920, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142215

RESUMO

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacocinética , Domínio Catalítico , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacocinética , Células Vero
5.
Virol J ; 14(1): 236, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29228983

RESUMO

BACKGROUND: Direct acting antivirals (DAAs) provide efficient hepatitis C virus (HCV) therapy and clearance for a majority of patients, but are not available or effective for all patients. They risk developing HCV-induced hepatocellular carcinoma (HCC), for which the mechanism remains obscure and therapy is missing. Annexin A2 (AnxA2) has been reported to co-precipitate with the non-structural (NS) HCV proteins NS5B and NS3/NS4A, indicating a role in HCC tumorigenesis and effect on DAA therapy. METHODS: Surface plasmon resonance biosensor technology was used to characterize direct interactions between AnxA2 and HCV NS5B, NS3/NS4 and RNA, and the subsequent effects on catalysis and inhibition. RESULTS: No direct interaction between AnxA2 and NS3/NS4A was detected, while AnxA2 formed a slowly dissociating, high affinity (K D = 30 nM), complex with NS5B, decreasing its catalytic activity and affinity for the allosteric inhibitor filibuvir. The RNA binding of the two proteins was independent and AnxA2 and NS5B interacted with different RNAs in ternary complexes of AnxA2:NS5B:RNA, indicating specific preferences. CONCLUSIONS: The complex interplay revealed between NS5B, AnxA2, RNA and filibuvir, suggests that AnxA2 may have an important role for the progression and treatment of HCV infections and the development of HCC, which should be considered also when designing new allosteric inhibitors.


Assuntos
Anexina A2/metabolismo , Hepacivirus/enzimologia , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sítio Alostérico , Animais , Anexina A2/genética , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Cinética , Ligação Proteica/efeitos dos fármacos , Pironas/farmacologia , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Triazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA