Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Br J Cancer ; 123(1): 61-71, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32336752

RESUMO

BACKGROUND: Understanding the status of intratumoural immune microenvironment is necessary to ensure the efficacy of immune-checkpoint (IC) blockade therapy. Cortisol plays pivotal roles in glucocorticoid interactions in the immune system. We examined the correlation between intratumourally synthesised cortisol through 11ß hydroxysteroid dehydrogenase (HSD) 1 and the immune microenvironment in non-small-cell lung carcinoma (NSCLC). METHODS: We correlated 11ßHSD1 immunoreactivity in 125 cases of NSCLC with the amount of intratumoural immune cells present, and 11ßHSD1 immunoreactivity with the efficacy of IC blockade therapy in 18 specimens of NSCLC patients. In vitro studies were performed to validate the immunohistochemical examination. RESULTS: 11ßHSD1 immunoreactivity showed a significant inverse correlation with the number of tumour-infiltrating lymphocytes and CD3- or CD8-positive T cells. 11ßHSD1 immunoreactivity tended to be inversely correlated with the clinical efficacy of the IC blockade therapy. In vitro studies revealed that 11ßHSD1 promoted the intratumoural synthesis of cortisol. This resulted in a decrease in cytokines and in the inhibition of monocyte migration. CONCLUSIONS: Our study is the first report clarifying the inhibitory effects of intratumourally synthesised cortisol through 11ßHSD1 on immune cell migration. We propose that the response to IC blockade therapy in NSCLC may be predicted by 11ßHSD1.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral/efeitos dos fármacos
2.
Mol Cell Biochem ; 366(1-2): 175-82, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22484643

RESUMO

ER-to-Golgi protein transport involves transport vesicles of which formation is initiated by assembly of Sar1. The assembly of Sar1 is suppressed by protein kinase inhibitor H89, suggesting that ER-to-Golgi transport is regulated progressively by H89 sensitive kinase. ER-resident G(i2) protein suppresses vesicle formation with inhibition of Sar1 assembly. This study examined whether these promotion and suppression of vesicle transport share the same signal pathway, by examining the effects of G(i/o) protein activator mastoparan 7 (Mp-7) and H89 on Sar1 and Sec23 recruitment onto microsomes. In a cell-free system for Sar1 translocation assay, GTPγS addition induced the translocation of Sar1 onto microsomes. Mp-7 and H89 decreased the Sar1 translocation. Double treatment of Mp-7 and H89 strongly decreased Sar1 translocation. In single and double treatments, however, G(i/o) protein inactivator pertussis toxin (IAP) partially restored the suppressive effect of Mp-7, but had not any effect on H89-induced effect. Then, the assembly of Sec23 onto the microsome was also increased by the addition of GTPγS. Sec23 translocation was decreased by Mp-7 and/or H89 treatment and recovered by IAP pretreatment except for H89 single treatment, similarly to Sar1 translocation in each treatment. Inhibitory effects of H89 and Mp-7on ER-to-Golgi vesicle transport by H89 or Mp-7 were also confirmed in a cell culture system by BFA-dispersion and BFA-reconstruction experiments. These findings indicate that promotion and suppression of ER-to-Golgi vesicle transport are modulated through separate signal pathways.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Retículo Endoplasmático/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Quinases/metabolismo , Animais , Brefeldina A/farmacologia , Sistema Livre de Células , Células Cultivadas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Membranas Intracelulares/metabolismo , Isoquinolinas/farmacologia , Fígado/citologia , Masculino , Microssomos/metabolismo , Peptídeos/farmacologia , Toxina Pertussis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sulfonamidas/farmacologia , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA