Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Oncol ; 13: 1277453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941547

RESUMO

Imetelstat shows activity in patients with myeloproliferative neoplasms, including primary myelofibrosis (PMF) and essential thrombocythemia. Here, we describe a case of prolonged disease stabilization by imetelstat treatment of a high-risk PMF patient enrolled into the clinical study MYF2001. We confirmed continuous shortening of telomere length (TL) by imetelstat treatment but observed emergence and expansion of a KRAST58I mutated clone during the patient's clinical course. In order to investigate the molecular mechanisms involved in the imetelstat treatment response, we generated induced pluripotent stem cells (iPSC) from this patient. TL of iPSC-derived hematopoietic stem and progenitor cells, which was increased after reprogramming, was reduced upon imetelstat treatment for 14 days. However, while imetelstat reduced clonogenic growth of the patient's primary CD34+ cells, clonogenic growth of iPSC-derived CD34+ cells was not affected, suggesting that TL was not critically short in these cells. Also, the propensity of iPSC differentiation toward megakaryocytes and granulocytes was not altered. Using human TF-1MPL and murine 32DMPL cell lines stably expressing JAK2V617F or CALRdel52, imetelstat-induced reduction of viability was significantly more pronounced in CALRdel52 than in JAK2V617F cells. This was associated with an immediate downregulation of JAK2 phosphorylation and downstream signaling as well as a reduction of hTERT and STAT3 mRNA expression. Hence, our data demonstrate that imetelstat reduces TL and targets JAK/STAT signaling, particularly in CALR-mutated cells. Although the exact patient subpopulation who will benefit most from imetelstat needs to be defined, our data propose that CALR-mutated clones are highly vulnerable.

2.
Front Oncol ; 11: 729207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490122

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy represents a new standard of care for an increasing number of malignancies. Nevertheless, response rates and outcome of ICI treatment vary between individuals and the identification of predictive markers or hints towards immune cell exhaustion during therapy has remained a major challenge. Leukocyte telomere length is an established predictive biomarker of replicative aging and cellular proliferative potential in various hematological diseases. However, its relevance in the context of ICI therapy has not been investigated to date. Here, we analyze the age-adapted delta telomere length (ΔTL) of peripheral leukocytes as a potential predictive and prognostic marker in patients undergoing ICI therapy. METHODS: Age-adapted delta telomere length (ΔTL) of 84 patients treated with ICIs for solid malignancies was measured via quantitative real-time PCR. ΔTL was correlated with outcome and clinical data. RESULTS: ΔTL was not significantly altered between patients with different tumor entities or tumor stages and did not predict tumor response to ICI therapy. However, ΔTLs at initiation of treatment were a prognostic marker for overall survival (OS). When using a calculated ideal cut-off value, the median OS in patients with shorter ΔTL was 5.7 months compared to 18.0 months in patients showing longer ΔTL. The prognostic role of age-adapted ΔTL was further confirmed by uni- and multivariate Cox-regression analyses. CONCLUSION: In the present study, we demonstrate that shorter telomere lengths in peripheral blood leukocytes are associated with a significantly impaired outcome in patients receiving ICI therapy across different malignancies. We explain our findings by hypothesizing an older replicative age in peripheral leukocytes of patients with an impaired overall survival, reflected by a premature TL shortening. Whether this association is ICI-specific remains unknown. Further follow-up studies are needed to provide insights about the exact mechanism of how shortened telomeres eventually affect OS and could help guiding therapeutic decisions in future.

3.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003434

RESUMO

Dyskeratosis congenita (DKC) is a rare inherited disease of impaired telomere maintenance that progressively leads to multi-organ failure, including the bone marrow. By enhancing telomerase activity, androgen derivatives (ADs) are a potential therapeutic option able to re-elongate previously shortened telomeres. Danazol, oxymetholone, and nandrolone are ADs most frequently used to treat DKC. However, no direct in vitro analyses comparing the efficacy of these ADs have been conducted so far. We therefore treated mononuclear cells derived from peripheral blood and bone marrow of four patients with mutations in telomerase reverse transcriptase (TERT, n = 1),in the telomerase RNA component (TERC, n = 2) and in dyskerin pseudouridine synthase 1 (DKC1, n = 1) and found no substantial differences in the activity of these three agents in patients with TERC/TERT mutations. All AD studied produced comparable improvements of proliferation rates as well as degrees of telomere elongation. Increased TERT expression levels were shown with danazol and oxymetholone. The beneficial effects of all ADs on proliferation of bone marrow progenitors could be reversed by tamoxifen, an estrogen antagonist abolishing estrogen receptor-mediated TERT expression, thereby underscoring the involvement of TERT in AD mechanism of action. In conclusion, no significant differences in the ability to functionally enhance telomerase activity could be observed for the three AD studied in vitro. Physicians therefore might choose treatment based on patients' individual co-morbidities, e.g., pre-existing liver disease and expected side-effects.


Assuntos
Proteínas de Ciclo Celular/genética , Disceratose Congênita/tratamento farmacológico , Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteínas Nucleares/genética , RNA/genética , Telomerase/genética , Androgênios/genética , Androgênios/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Danazol/farmacologia , Disceratose Congênita/genética , Disceratose Congênita/patologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/enzimologia , Humanos , Mutação/genética , Nandrolona/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Oximetolona/farmacologia , Cultura Primária de Células , RNA/antagonistas & inibidores , Telomerase/antagonistas & inibidores , Telômero/efeitos dos fármacos , Telômero/genética
4.
Ann N Y Acad Sci ; 1466(1): 93-103, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31647584

RESUMO

Assessment of telomere length (TL) in peripheral blood leukocytes is part of the diagnostic algorithm applied to patients with acquired bone marrow failure syndromes (BMFSs) and dyskeratosis congenita (DKC). Monochrome multiplex-quantitative polymerase chain reaction (MM-qPCR) and fluorescence in situ hybridization (flow-FISH) are methodologies available for TL screening. Dependent on TL expressed in relation to percentiles of healthy controls, further genetic testing for inherited mutations in telomere maintenance genes is recommended. However, the correct threshold to trigger this genetic workup is still under debate. Here, we prospectively compared MM-qPCR and flow-FISH regarding their capacity for accurate identification of DKC patients. All patients (n = 105) underwent genetic testing by next-generation sequencing and in 16 patients, mutations in DKC-relevant genes were identified. Whole leukocyte TL of patients measured by MM-qPCR was found to be moderately correlated with lymphocyte TL measured by flow-FISH (r² = 0.34; P < 0.0001). The sensitivity of both methods was high, but the specificity of MM-qPCR (29%) was significantly lower compared with flow-FISH (58%). These results suggest that MM-qPCR of peripheral blood cells is inferior to flow-FISH for clinical routine screening for suspected DKC in adult patients with BMFS due to lower specificity and a higher rate of false-positive results.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Hibridização in Situ Fluorescente/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Homeostase do Telômero/fisiologia , Telômero/genética , Adulto , Idoso , Transtornos da Insuficiência da Medula Óssea/diagnóstico , Transtornos da Insuficiência da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea/patologia , Estudos de Casos e Controles , Estudos de Coortes , Disceratose Congênita/diagnóstico , Disceratose Congênita/genética , Disceratose Congênita/patologia , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Encurtamento do Telômero/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA