Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chromosome Res ; 30(1): 77-90, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35043294

RESUMO

Telomeres are the physical ends of eukaryotic linear chromosomes that play critical roles in cell division, chromosome maintenance, and genome stability. In many plants, telomeres are comprised of TTTAGGG tandem repeat that is widely found in plants. We refer to this repeat as canonical plant telomeric repeat (CPTR). Peanut (Arachis hypogaea L.) is a spontaneously formed allotetraploid and an important food and oil crop worldwide. In this study, we analyzed the peanut genome sequences and identified a new type of tandem repeat with 10-bp basic motif TTTT(C/T)TAGGG named TAndem Repeat (TAR) 30. TAR30 showed significant sequence identity to TTTAGGG repeat in 112 plant genomes suggesting that TAR30 is a homolog of CPTR. It also is nearly identical to the telomeric tandem repeat in Cestrum elegans. Fluorescence in situ hybridization (FISH) analysis revealed interstitial locations of TAR30 in peanut chromosomes but we did not detect visible signals in the terminal ends of chromosomes as expected for telomeric repeats. Interestingly, different TAR30 hybridization patterns were found between the newly induced allotetraploid ValSten and its diploid wild progenitors. The canonical telomeric repeat TTTAGGG is also present in the peanut genomes and some of these repeats are closely adjacent to TAR30 from both cultivated peanut and its wild relatives. Overall, our work identifies a new homolog of CPTR and reveals the unique distributions of TAR30 in cultivated peanuts and wild species. Our results provide new insights into the evolution of tandem repeats during peanut polyploidization and domestication.


Assuntos
Arachis , Genoma de Planta , Arachis/genética , Hibridização Genética , Hibridização in Situ Fluorescente , Telômero/genética
3.
Nat Genet ; 51(5): 877-884, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043755

RESUMO

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.


Assuntos
Arachis/genética , Arachis/classificação , Argentina , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Metilação de DNA , DNA de Plantas/genética , Domesticação , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Hibridização Genética , Fenótipo , Poliploidia , Recombinação Genética , Especificidade da Espécie , Tetraploidia
4.
Am J Bot ; 105(6): 1053-1066, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29985538

RESUMO

PREMISE OF THE STUDY: The genetic bottleneck of polyploid formation can be mitigated by multiple origins, gene flow, and recombination among different lineages. In crop plants with limited origins, efforts to increase genetic diversity have limitations. Here we used lineage recombination to increase genetic diversity in peanut, an allotetraploid likely of single origin, by crossing with a novel allopolyploid genotype and selecting improved lines. METHODS: Single backcross progeny from cultivated peanut × wild species-derived allotetraploid cross were studied over successive generations. Using genetic assumptions that encompass segmental allotetraploidy, we used single nucleotide polymorphisms and whole-genome sequence data to infer genome structures. KEY RESULTS: Selected lines, despite a high proportion of wild alleles, are agronomically adapted, productive, and with improved disease resistances. Wild alleles mostly substituted homologous segments of the peanut genome. Regions of dispersed wild alleles, characteristic of gene conversion, also occurred. However, wild chromosome segments sometimes replaced cultivated peanut's homeologous subgenome; A. ipaënsis B sometimes replaced A. hypogaea A subgenome (~0.6%), and A. duranensis replaced A. hypogaea B subgenome segments (~2%). Furthermore, some subgenome regions historically lost in cultivated peanut were "recovered" by wild chromosome segments (effectively reversing the "polyploid ratchet"). These processes resulted in lines with new genome structure variations. CONCLUSIONS: Genetic diversity was introduced by wild allele introgression, and by introducing new genome structure variations. These results highlight the special possibilities of segmental allotetraploidy and of using lineage recombination to increase genetic diversity in peanut, likely mirroring what occurs in natural segmental allopolyploids with multiple origins.


Assuntos
Arachis/genética , Hibridização Genética , Poliploidia , Alelos , Variação Genética , Recombinação Homóloga
5.
Mol Plant ; 11(3): 485-495, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476915

RESUMO

Most plants are polyploid due to whole-genome duplications (WGD) and can thus have duplicated genes. Following a WGD, paralogs are often fractionated (lost) and few duplicate pairs remain. Little attention has been paid to the role of DNA methylation in the functional divergence of paralogous genes. Using high-resolution methylation maps of accessions of domesticated and wild soybean, we show that in soybean, a recent paleopolyploid with many paralogs, DNA methylation likely contributed to the elimination of genetic redundancy of polyploidy-derived gene paralogs. Transcriptionally silenced paralogs exhibit particular genomic features as they are often associated with proximal transposable elements (TEs) and are preferentially located in pericentromeres, likely due to gene movement during evolution. Additionally, we provide evidence that gene methylation associated with proximal TEs is implicated in the divergence of expression profiles between orthologous genes of wild and domesticated soybean, and within populations.


Assuntos
Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Glycine max/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Poliploidia
6.
Plant Physiol ; 168(4): 1433-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26149573

RESUMO

Soybean (Glycine max) and common bean (Phaseolus vulgaris) share a paleopolyploidy (whole-genome duplication [WGD]) event, approximately 56.5 million years ago, followed by a genus Glycine-specific polyploidy, approximately 10 million years ago. Cytosine methylation is an epigenetic mark that plays an important role in the regulation of genes and transposable elements (TEs); however, the role of DNA methylation in the fate/evolution of genes following polyploidy and speciation has not been fully explored. Whole-genome bisulfite sequencing was used to produce nucleotide resolution methylomes for soybean and common bean. We found that, in soybean, CG body-methylated genes were abundant in WGD genes, which were, on average, more highly expressed than single-copy genes and had slower evolutionary rates than unmethylated genes, suggesting that WGD genes evolve more slowly than single-copy genes. CG body-methylated genes were also enriched in shared single-copy genes (single copy in both species) that may be responsible for the broad and high expression patterns of this class of genes. In addition, diverged methylation patterns in non-CG contexts between paralogs were due mostly to TEs in or near genes, suggesting a role for TEs and non-CG methylation in regulating gene expression post polyploidy. Reference methylomes for both soybean and common bean were constructed, providing resources for investigating epigenetic variation in legume crops. Also, the analysis of methylation patterns of duplicated and single-copy genes has provided insights into the functional consequences of polyploidy and epigenetic regulation in plant genomes.


Assuntos
Epigênese Genética , Epigenômica/métodos , Genes de Plantas/genética , Glycine max/genética , Phaseolus/genética , Poliploidia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Metilação de DNA , Elementos de DNA Transponíveis , Ontologia Genética , Genoma de Planta/genética , Phaseolus/classificação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Glycine max/classificação , Especificidade da Espécie , Sintenia
7.
Nat Genet ; 46(7): 707-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908249

RESUMO

Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.


Assuntos
Produtos Agrícolas/genética , Genes de Plantas , Genoma de Planta , Phaseolus/genética , Locos de Características Quantitativas , América Central , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Humanos , Dados de Sequência Molecular , Phaseolus/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/genética , Ploidias , Polimorfismo de Nucleotídeo Único/genética , Padrões de Referência , Sementes/química , Sementes/genética , Análise de Sequência de DNA , América do Sul
8.
Nature ; 463(7278): 178-83, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20075913

RESUMO

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.


Assuntos
Genoma de Planta/genética , Genômica , Glycine max/genética , Poliploidia , Arabidopsis/genética , Cruzamento , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Genes Duplicados/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Nodulação/genética , Locos de Características Quantitativas/genética , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico/genética , Óleo de Soja/biossíntese , Sintenia/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA