Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38879117

RESUMO

INTRODUCTION: Sodium-glucose cotransporter-2 (SGLT-2) inhibitors are antidiabetic medications that have been shown to decrease cardiovascular events and heart failure-related mortality in clinical studies. We attempt to examine the complex interplay between metabolic syndrome (MS) and the SGLT-2 inhibitor canagliflozin (CAN) in a clinically relevant model of chronic myocardial ischemia (CMI). METHODS: Twenty-one Yorkshire swine were fed a high-fat diet starting at six weeks of age to induce MS. At 11 weeks, all underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce CMI. After two weeks, swine received either control (CON, n=11) or CAN 300 mg PO daily (n=10) for 5 weeks, whereupon all underwent terminal harvest. RESULTS: There was a significant increase in cardiac output and heart rate with a decrease in pulse pressure in the CAN group compared to CON (all p<0.05). The CAN group had a significant increase in capillary density (p=0.02). Interestingly, there was no change in myocardial perfusion or arteriolar density. CAN induced a significant increase in markers of angiogenesis, including p-eNOS, eNOS, VEGFR1, HSP70, and ERK (all p<0.05), plausibly resulting in capillary angiogenesis. CONCLUSIONS: CAN treatment leads to a significant increase in capillary density and augmented cardiac function in a swine model of CMI in the setting of MS. This work further elucidates the mechanism of SGLT-2 inhibitors in patients with cardiac disease; however, more studies are needed to determine if this increase in capillary density plays a role in the improvements seen in clinical studies.

2.
Surgery ; 175(2): 265-270, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37940431

RESUMO

BACKGROUND: Inflammation and disruption of cardiac metabolism are prevalent in the setting of myocardial ischemia. Canagliflozin, a sodium-glucose costransporter-2 inhibitor, has beneficial effects on the heart, though the precise mechanisms are unknown. This study investigated the effects of canagliflozin therapy on metabolic pathways and inflammation in ischemic myocardial tissue using a swine model of chronic myocardial ischemia. METHODS: Sixteen Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic ischemia. Two weeks later, pigs received either no drug (n = 8) or 300 mg canagliflozin (n = 8) daily. Five weeks later, pigs underwent terminal harvest and tissue collection. RESULTS: Canagliflozin treatment was associated with a trend toward decreased expression of fatty acid oxidation inhibitor acetyl-CoA carboxylase and decreased phosphorylated/inactivated acetyl-CoA carboxylase, a promotor of fatty acid oxidation, compared with control ischemic myocardium (P = .08, P = .03). There was also a significant modulation in insulin resistance markers p-IRS1, p-PKCα, and phosphoinositide 3-kinase in ischemic myocardium of the canagliflozin group compared with the control group (all P < .05). Canagliflozin treatment was associated with a significant increase in inflammatory markers interleukin 6, interleukin 17, interferon-gamma, and inducible nitric oxide synthase (all P < .05). There was a trend toward decreased expression of the anti-inflammatory cytokines interleukin 10 (P = .16) and interleukin 4 (P = .31) with canagliflozin treatment. CONCLUSION: The beneficial effects of canagliflozin therapy appear to be associated with inhibition of fatty acid oxidation and enhancement of insulin signaling in ischemic myocardium. Interestingly, canagliflozin appears to increase the levels of several inflammatory markers, but further studies are required to better understand how canagliflozin modulates inflammatory signaling pathways.


Assuntos
Isquemia Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Simportadores , Suínos , Animais , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Canagliflozina/metabolismo , Miocárdio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Acetil-CoA Carboxilase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Inflamação/metabolismo , Glucose/metabolismo , Simportadores/metabolismo , Ácidos Graxos/metabolismo , Modelos Animais de Doenças
3.
Physiol Rep ; 11(24): e15866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38114067

RESUMO

Human bone mesenchymal stem cell-derived extracellular vesicles (HBMSC-EV) have been used successfully in animal models of myocardial ischemia, yet have dampened effects in metabolic syndrome through unknown mechanisms. This study demonstrates the basal differences between non-diabetic human coronary artery endothelial cells (HCAEC) and diabetic HCAEC (DM-HCAEC), and how these cells respond to the treatment of HBMSC-EV. HCAEC and DM-HCAEC were treated with HBMSC-EV for 6 h. Proteomics, western blot analysis, and tube formation assays were performed. Key metabolic, growth, and stress/starvation cellular responses were significantly altered in DM-HCAEC in comparison to that of HCAEC at baseline. Proteomics demonstrated increased phosphorus metabolic process and immune pathways and decreased RNA processing and biosynthetic pathways in DM-HCAEC. Similar to previous in vivo findings, HCAEC responded to the HBMSC-EV with regenerative and anti-inflammatory effects through the upregulation of multiple RNA pathways and downregulation of immune cell activation pathways. In contrast, DM-HCAEC had a significantly diminished response to HBMSC-EV, likely due to the baseline abnormalities in DM-HCAEC. To achieve the full benefits of HBMSC-EV and for a successful transition of this potential therapeutic agent to clinical studies, the abnormalities found in DM-HCAEC will need to be further studied.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Humanos , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus/metabolismo
4.
JTCVS Open ; 15: 220-228, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37808040

RESUMO

Objective: Limited treatments exist for nonoperative chronic coronary artery disease. Previously, our laboratory has investigated extracellular vesicle (EV) therapy as a potential treatment for chronic coronary artery disease using a swine model and demonstrated improved cardiac function in swine treated with intramyocardial EV injection. Here, we seek to investigate the potential cardiac benefits of EVs by using hypoxia-conditioned EVs (HEV). Specifically, this study aims to investigate the effect of HEV on apoptosis in chronically ischemic myocardium in swine. Methods: Fourteen Yorkshire swine underwent placement of an ameroid constrictor on the left circumflex artery. Two weeks later, swine underwent redo left thoracotomy with injection of either saline (control, n = 7) or HEVs (n = 7). After 5 weeks, swine were euthanized for tissue collection. Terminal deoxynucleotidyl transferase dUTP nick end labeling was used to quantify apoptosis. Immunoblotting was used for protein quantification. Results: Terminal deoxynucleotidyl transferase dUTP nick end labeling staining showed a decrease in apoptosis in the HEV group compared with the control (P = .049). The HEV group exhibited a significant increase in the anti-apoptotic signaling molecule phospho-BAD (P = .005), a significant decrease in B-cell lymphoma 2 (P = .006) and an increase in the phospho-B-cell lymphoma to B-cell lymphoma 2 ratio (P < .001). Furthermore, the HEV group exhibited increased levels of prosurvival signaling markers including phosphoinositide 3-kinase, phosphor-extracellular signal-regulated kinase 1/2, phospho-forkhead box protein O1, and phospho-protein kinase B to protein kinase B ratio (all P < .05). Conclusions: In chronic myocardial ischemia, treatment with HEV results in a decrease in overall apoptosis, possibly through the activation of both pro-survival and anti-apoptotic signaling pathways.

5.
J Thorac Cardiovasc Surg ; 166(6): e535-e550, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604273

RESUMO

OBJECTIVES: Sodium-glucose cotransporter-2 inhibitor, canagliflozin, improves myocardial perfusion to ischemic territory without accompanying changes in vascular density. We aimed to (1) characterize effects on angiogenic pathways, (2) use multiomics to identify gene expression and metabolite profiles relevant to regulation of myocardial blood flow, and (3) investigate drug effect on coronary microvascular reactivity. METHODS: A nondiabetic swine model of chronic myocardial ischemia and nondiabetic rat model were used to study functional and molecular effects of canagliflozin on myocardium and in vitro microvascular reactivity. RESULTS: Canagliflozin resulted in increased coronary microvascular vasodilation and decreased vasoconstriction (P < .05) without changes in microvascular density (P > .3). Expression of the angiogenic modulator, endostatin, increased (P = .008), along with its precursor, collagen 18 (P < .001), and factors that increase its production, including cathepsin L (P = .004). Endostatin and collagen 18 levels trended toward an inverse correlation with blood flow to ischemic territory at rest. Proangiogenic fibroblast growth factor receptor was increased (P = .03) and matrix metalloproteinase-9 was decreased (P < .001) with canagliflozin treatment. Proangiogenic vascular endothelial growth factor A (P = .13), Tie-2 (P = .10), and Ras (P = .18) were not significantly altered. Gene expression related to the cardiac renin-angiotensin system was significantly decreased. CONCLUSIONS: In chronic myocardial ischemia, canagliflozin increased absolute blood flow to the myocardium without robustly increasing vascular density or proangiogenic signaling. Canagliflozin resulted in altered coronary microvascular reactivity to favor vasodilation, likely through direct effect on vascular smooth muscle. Downregulation of cardiac renin-angiotensin system demonstrated local regulation of perfusion. VIDEO ABSTRACT.


Assuntos
Isquemia Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Suínos , Animais , Ratos , Vasodilatação , Canagliflozina/farmacologia , Canagliflozina/metabolismo , Canagliflozina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Endostatinas/metabolismo , Endostatinas/farmacologia , Endostatinas/uso terapêutico , Miocárdio/metabolismo
6.
Physiol Rep ; 11(6): e15568, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36967241

RESUMO

In animal models, human bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EV) have been found to have beneficial effects in cardiovascular disease, but only when administered via intramyocardial injection. The biodistribution of either intravenous or intramyocardial injection of MSC-EV in the presence of myocardial injury is uncharacterized at this time. We hypothesized that intramyocardial injection will ensure delivery of MSC-EV to the ischemic myocardium, while intravenous injection will not. Human bone marrow mesenchymal stem cells were cultured and the MSC-EV were isolated and characterized. The MSC-EVs were then labeled with DiD lipid dye. FVB mice with normal cardiac function underwent left coronary artery ligation followed by either peri-infarct intramyocardial or tail vein injection of 3*106 or 2*109 particles of DiD-labeled MSC-EV or a DiD-saline control. The heart, lungs, liver, spleen and kidneys were harvested 2 h post-injection and were submitted for fluorescent molecular tomography imaging. Myocardial uptake of MSC-EV was only visualized after intramyocardial injection of 2*109 MSC-EV particles (p = 0.01) compared to control, and there were no differences in cardiac fluorescence after tail vein injection of MSC-EV (p = 0.5). There was no significantly detectable MSC-EV uptake in other organs after intramyocardial injection. After tail vein injection of 2*109 particles of MSC-EV, the liver (p = 0.02) and spleen (p = 0.04) appeared to have diffuse MSC-EV uptake compared to controls. Even in the presence of myocardial injury, only intramyocardial but not intravenous administration resulted in detectable levels of MSC-EV in the ischemic myocardium. This study confirms the role for intramyocardial injection in maximal and effective delivery of MSC-EV. Our ongoing studies aimed at developing bioengineered MSC-EV for targeted delivery to the heart may render MSC-EV clinically applicable for cardiovascular disease.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Camundongos , Animais , Humanos , Injeções Intravenosas , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Modelos Animais de Doenças
7.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675188

RESUMO

Human bone marrow mesenchymal stem cell derived-extracellular vesicles (HBMSC-EV) are known for their regenerative and anti-inflammatory effects in animal models of myocardial ischemia. However, it is not known whether the efficacy of the EVs can be modulated by pre-conditioning of HBMSC by exposing them to either starvation or hypoxia prior to EV collection. HBMSC-EVs were isolated following normoxia starvation (NS), normoxia non-starvation (NNS), hypoxia starvation (HS), or hypoxia non-starvation (HNS) pre-conditioning. The HBMSC-EVs were characterized by nanoparticle tracking analysis, electron microscopy, Western blot, and proteomic analysis. Comparative proteomic profiling revealed that starvation pre-conditioning led to a smaller variety of proteins expressed, with the associated lesser effect of normoxia versus hypoxia pre-conditioning. In the absence of starvation, normoxia and hypoxia pre-conditioning led to disparate HBMSC-EV proteomic profiles. HNS HBMSC-EV was found to have the greatest variety of proteins overall, with 74 unique proteins, the greatest number of redox proteins, and pathway analysis suggestive of improved angiogenic properties. Future HBMSC-EV studies in the treatment of cardiovascular disease may achieve the most therapeutic benefits from hypoxia non-starved pre-conditioned HBMSC. This study was limited by the lack of functional and animal models of cardiovascular disease and transcriptomic studies.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Humanos , Doenças Cardiovasculares/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo
8.
Basic Res Cardiol ; 118(1): 3, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639609

RESUMO

Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.


Assuntos
Infarto do Miocárdio , Fosforilação Oxidativa , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Células Endoteliais/metabolismo , Proteômica , Infarto do Miocárdio/metabolismo , Mitocôndrias/metabolismo , Endotélio/metabolismo
9.
J Am Heart Assoc ; 12(1): e028623, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36583437

RESUMO

Background Sodium-glucose cotransporter-2 inhibitors are cardioprotective independent of glucose control, as demonstrated in animal models of acute myocardial ischemia and clinical trials. The functional and molecular mechanisms of these benefits in the setting of chronic myocardial ischemia are poorly defined. The purpose of this study is to determine the effects of canagliflozin therapy on myocardial perfusion, fibrosis, and function in a large animal model of chronic myocardial ischemia. Methods and Results Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, pigs received either no drug (n=8) or 300 mg sodium-glucose cotransporter-2 inhibitor canagliflozin orally, daily (n=8). Treatment continued for 5 weeks, followed by hemodynamic measurements, harvest, and tissue analysis. Canagliflozin therapy was associated with increased stroke volume and stroke work and decreased left ventricular stiffness compared with controls. The canagliflozin group had improved perfusion to ischemic myocardium compared with controls, without differences in arteriolar or capillary density. Canagliflozin was associated with decreased interstitial and perivascular fibrosis in chronically ischemic tissue, with reduced Jak/STAT (Janus kinase/signal transducer and activator of transcription) signaling compared with controls. In ischemic myocardium of the canagliflozin group, there was increased expression and activation of adenosine monophosphate-activated protein kinase, decreased activation of endothelial nitric oxide synthase, and unchanged total endothelial nitric oxide synthase. Canagliflozin therapy reduced total protein oxidation and increased expression of mitochondrial antioxidant superoxide dismutase 2 compared with controls. Conclusions In the setting of chronic myocardial ischemia, canagliflozin therapy improves myocardial function and perfusion to ischemic territory, without changes in collateralization. Attenuation of fibrosis via reduced Jak/STAT signaling, activation of adenosine monophosphate-activated protein kinase, and antioxidant signaling may contribute to these effects.


Assuntos
Isquemia Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Antioxidantes/farmacologia , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Circulação Coronária , Modelos Animais de Doenças , Fibrose , Isquemia Miocárdica/complicações , Óxido Nítrico Sintase Tipo III , Perfusão , Proteínas Quinases , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Suínos
10.
J Thorac Cardiovasc Surg ; 166(1): e5-e14, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36244819

RESUMO

OBJECTIVE: Our recent studies using a porcine model of metabolic syndrome (MS) and chronic myocardial ischemia show that extracellular vesicle (EV) therapy improves blood flow and arteriogenesis in ischemic myocardium, although mechanisms of these changes are unclear. We hypothesized that in the setting of MS, EV therapy would decrease antiangiogenic signaling to mediate increased blood flow to chronically ischemic myocardium. METHODS: Yorkshire swine were fed a high-fat diet for 4 weeks to induce MS, then underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, pigs underwent intramyocardial injection of vehicle (control, n = 6) or human bone marrow-derived EVs (n = 8). Five weeks later, left ventricular myocardium in ischemic territory was harvested. Protein expression was measured using immunoblot analysis, and data were analyzed using Wilcoxon rank sum test. Myocardial perfusion was measured with isotope-labeled microspheres, and correlation data were analyzed using Spearman rank correlation coefficient. RESULTS: EV treatment was associated with decreased expression of antiangiogenic proteins, angiostatin (P < .001) and endostatin (P = .043) in ischemic myocardium compared with control. In EV-treated pigs, there was a negative correlation between blood flow to ischemic myocardium and angiostatin (rs = -0.76; P = .037), but not endostatin expression (rs = .02; P = .98). EV treatment was also associated with decreased cathepsin D, which cleaves precursors to produce angiostatin and endostatin, in ischemic myocardium (P = .020). CONCLUSIONS: In the setting of MS and chronic myocardial ischemia, EV therapy is associated with decreased expression of antiangiogenic proteins, which might contribute to increased blood flow to chronically ischemic myocardium.


Assuntos
Vesículas Extracelulares , Síndrome Metabólica , Isquemia Miocárdica , Suínos , Humanos , Animais , Síndrome Metabólica/metabolismo , Angiostatinas/metabolismo , Modelos Animais de Doenças , Isquemia Miocárdica/complicações , Miocárdio/metabolismo , Vesículas Extracelulares/metabolismo , Circulação Coronária
11.
J Thorac Cardiovasc Surg ; 165(5): e225-e236, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36028364

RESUMO

OBJECTIVE: Extracellular vesicle (EV) therapy has been shown to mitigate inflammation in animal models of acute myocardial ischemia/reperfusion. This study evaluates the effect of EV therapy on inflammatory signaling in a porcine model of chronic myocardial ischemia and metabolic syndrome. METHODS: Yorkshire swine were fed a high-cholesterol diet for 4 weeks to induce metabolic syndrome, then underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, pigs received intramyocardial injection of either saline (control) (n = 6) or EVs (n = 8). Five weeks later, pigs were put to death and left ventricular myocardial tissue in ischemic and nonischemic territories were harvested. Protein expression was measured with immunoblotting, and macrophage count was determined by immunofluorescent staining of cluster of differentiation 68. Data were statistically analyzed via Wilcoxon rank-sum test. RESULTS: EV treatment was associated with decreased expression of proinflammatory markers nuclear factor kappa B (P = .002), pro-interleukin (IL) 1ß (P = .020), and cluster of differentiation 11c (P = .001) in ischemic myocardium, and decreased expression of nuclear factor kappa B in nonischemic myocardium (P = .03) compared with control. EV treatment was associated with increased expression of anti-inflammatory markers IL-10 (P = .020) and cluster of differentiation 163 (P = .043) in ischemic myocardium compared with control. There were no significant differences in expression of IL-6, tumor necrosis factor alpha, arginase, HLA class II histocompatibility antigen DR alpha chain, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha, or phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha in ischemic myocardium or pro-IL1ß, IL-6, tumor necrosis factor alpha, IL-10, or nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha in nonischemic myocardium of EV-treated pigs compared with control. There were no differences in macrophage count in ischemic myocardium between EV-treated pigs and control. CONCLUSIONS: In the setting of metabolic syndrome and chronic myocardial ischemia, intramyocardial EV therapy attenuates proinflammatory signaling.


Assuntos
Vesículas Extracelulares , Síndrome Metabólica , Isquemia Miocárdica , Suínos , Animais , Interleucina-10 , NF-kappa B/metabolismo , Síndrome Metabólica/terapia , Síndrome Metabólica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/patologia , Vesículas Extracelulares/metabolismo , Modelos Animais de Doenças
12.
JTCVS Open ; 16: 419-428, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204622

RESUMO

Background: Coronary artery disease remains a leading cause of death worldwide. Bone mesenchymal stem cell-derived extracellular vesicles (EVs) have shown promise in the setting of myocardial ischemia. Furthermore, the properties of the EVs can be modified via preconditioning of progenitor cells. Previous research from our lab demonstrated a significant decrease in proinflammatory signaling following treatment with EVs derived from starvation preconditioning of human bone mesenchymal stem cells (MVM EVs) in a porcine model of chronic myocardial ischemia. However, rodent models have demonstrated that the use of EVs derived from hypoxia preconditioning of bone mesenchymal stem cells (HYP EVs) may have extended benefits compared to MVM EVs. This study evaluated the effect of HYP EVs on inflammation in a swine model of chronic myocardial ischemia. We hypothesized that HYP EVs would have a greater anti-inflammatory effect than MVM EVs or saline (CON). Methods: Yorkshire swine fed a standard diet underwent placement of an ameroid constrictor to the left circumflex artery. Two weeks later, the animals received intramyocardial injection of saline (CON; n = 6), starvation-derived EVs (MVM; n = 10), or hypoxia-derived EVs (HYP; n = 7). After 5 weeks, myocardial perfusion was assessed, and left ventricular myocardial tissue was harvested. Protein expression was measured using immunoblotting. Data were analyzed via the Kruskal-Wallis test or one-way analysis of variance based on the results of a Shapiro-Wilk test. Coronary perfusion was plotted against relative cytokine concentration and analyzed with the Spearman rank-sum test. Results: HYP EV treatment was associated with decreased expression of proinflammatory markers interleukin (IL)-6 (P = .03), Pro-IL-1ß (P = .01), IL-17 (P < .01), and NOD-like receptor protein 3 (NLRP3; P < .01) compared to CON. Ischemic tissue from the MVM group showed significantly decreased expression of pro-inflammatory markers NLRP3 (P < .01), IL-17 (P < .01), and HLA class II histocompatibility antigen (P < .01) compared to CON. The MVM group also had decreased expression of anti-inflammatory IL-10 (P = .01) compared to CON counterparts. There were no significant differences in expression of tumor necrosis factor-α, interferon-γ, IL-12, Toll-like receptor-2, and nuclear factor kappa-light-chain-enhancer of activated B cells in either group . There was no correlation between coronary perfusion and cytokine concentration in the MVM or HYP groups, either at rest or with pacing. Conclusions: HYP EVs and MVM EVs appear to result in relative decreases in the degree of inflammation in chronically ischemic swine myocardium, independent of coronary perfusion. It is possible that this observed decrease may partially explain the myocardial benefits seen with both HYP and MVM EV treatment.

13.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35326129

RESUMO

Reactive oxygen species (ROS) imbalance results in endothelial cell function impairment. Natural phenolic antioxidant compounds have been investigated as therapeutic alternatives. The fruit bark of Brazilian-native pequi (Caryocar brasiliense, Camb.) is rich in polyphenols. The HPLC-MS (High-Performance Liquid Chromatography coupled with Mass Spectrometry) analyses identified gallic acid and catechin in six out of seven ethanolic extract samples prepared in our lab. In this study, we examined the effects of ethanolic pequi extract on ROS levels in human coronary artery endothelial cells (HCAEC) subjected to hypoxia or oxidative stress. We first confirmed the oxidant scavenging capacity of the extract. Then, HCAEC pre-incubated with 10 or 25 µg/mL of extract were subjected to hypoxia for 48 h or 100 µM H2O2 for six hours and compared to the normoxia group. Total and mitochondrial ROS levels and cell proliferation were measured. Pequi significantly reduced cytosolic HCAEC ROS levels in all conditions. Mitochondrial ROS were also reduced, except in hypoxia with 10 µg/mL of extract. HCAEC proliferation increased when treated with 25 µg/mL extract under hypoxia and after H2O2 addition. Additionally, pequi upregulated oxidative stress defense enzymes superoxide dismutase (SOD-)1, SOD-2, catalase, and glutathione peroxidase. Together, these findings demonstrate that pequi bark extract increases antioxidative enzyme levels, decreases ROS, and favors HACEC proliferation, pointing to a protective effect against oxidative stress.

14.
J Thorac Cardiovasc Surg ; 163(1): e11-e27, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359903

RESUMO

OBJECTIVES: Calpain activation during ischemia is known to play critical roles in myocardial remodeling. We hypothesize that calpain inhibition (CI) may serve to reverse and/or prevent fibrosis in chronically ischemic myocardium. METHODS: Yorkshire swine were fed a high-cholesterol diet for 4 weeks followed by placement of an ameroid constrictor on the left circumflex artery to induce myocardial ischemia. 3 weeks later, animals received either: no drug; high-cholesterol control group (CON; n = 8); low-dose CI (0.12 mg/kg; LCI, n = 9); or high-dose CI (0.25 mg/kg; HCI, n = 8). The high-cholesterol diet and CI were continued for 5 weeks, after which myocardial tissue was harvested. Tissue samples were analyzed by western blot for changes in protein content. RESULTS: In the setting of hypercholesterolemia and chronic myocardial ischemia, CI decreased the expression of collagen in ischemic and nonischemic myocardial tissue. This reduced collagen content was associated with a corresponding decrease in Jak/STAT/MCP-1 signaling pathway, suggesting a role for Jak 2 signaling in calpain activity. CI also decreases the expression of focal adhesion proteins (vinculin) and stabilizes the expression of cytoskeletal and structural proteins (N-cadherin, α-fodrin, desmin, vimentin, filamin, troponin-I). CI had no significant effect on metabolic and hemodynamic parameters. CONCLUSIONS: Calpain inhibition may be a beneficial medical therapy to decrease collagen formation in patients with coronary artery disease and associated comorbidities.


Assuntos
Calpaína/metabolismo , Colágeno , Glicoproteínas/farmacologia , Isquemia Miocárdica/metabolismo , Miocárdio , Remodelação Ventricular , Animais , Quimiocina CCL2/metabolismo , Colágeno/biossíntese , Colágeno/metabolismo , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/metabolismo , Modelos Animais de Doenças , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/prevenção & controle , Hipercolesterolemia/metabolismo , Janus Quinase 2/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia
15.
J Thorac Cardiovasc Surg ; 164(6): e371-e384, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756431

RESUMO

OBJECTIVE: The burden of mortality and morbidity of cardiovascular disease is in part due to substantial fibrosis accelerated by coexisting risk factors. This study aims to evaluate the effect of extracellular vesicle therapy on diastolic function and myocardial fibrosis in the setting of chronic myocardial ischemia with and without a high-fat diet. METHODS: Forty male Yorkshire swine were administered a normal or high-fat diet. At 11 weeks of age, they underwent placement of an ameroid constrictor on their left circumflex coronary artery. Both dietary groups then received either intramyocardial injection of vehicle saline as controls or extracellular vesicles as treatment into the ischemic territory (normal diet control, n = 8; high-fat diet controls, n = 11) or extracellular vesicles (normal diet extracellular vesicles, n = 9; high-fat diet extracellular vesicles, n = 12). Five weeks later, hemodynamic parameters, histology, and selected protein expression were evaluated. RESULTS: Extracellular vesicles reduced end-diastolic pressure volume relationship (P = .002), perivascular collagen density (P = .031), calcium mineralization (P = .026), and cardiomyocyte diameter (P < .0001), and upregulated osteopontin (P = .0046) and mechanistic target of rapamycin (P = .021). An interaction between extracellular vesicles and diet was observed in the vimentin area (P = .044) and fraction of myofibroblast markers to total vimentin (P = .049). Significant changes across diet were found with reductions in muscle fiber area (P = .026), tumor necrosis factor α (P = .0002), NADPH oxidase 2 and 4 (P = .0036, P = .008), superoxide dismutase 1 (P = .034), and phosphorylated glycogen synthase kinase 3ß (P = .020). CONCLUSIONS: Extracellular vesicle therapy improved the myocardium's ability to relax and is likely due to structural improvements at the extracellular matrix and cellular levels.


Assuntos
Vesículas Extracelulares , Isquemia Miocárdica , Masculino , Suínos , Animais , Dieta Hiperlipídica/efeitos adversos , Vimentina/metabolismo , Vimentina/farmacologia , Circulação Coronária , Modelos Animais de Doenças , Isquemia Miocárdica/complicações , Vesículas Extracelulares/metabolismo , Fibrose , Miocárdio/patologia
16.
Am J Physiol Heart Circ Physiol ; 321(5): H839-H849, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506225

RESUMO

Yorkshire swine were fed standard diet (n = 7) or standard diet containing applesauce rich in caffeic acid with Lactobacillus plantarum (n = 7) for 3 wk. An ameroid constrictor was next placed around the left coronary circumflex artery, and the dietary regimens were continued. At 14 wk, cardiac function, myocardial perfusion, vascular density, and molecular signaling in ischemic myocardium were evaluated. The L. plantarum-applesauce augmented NF-E2-related factor 2 (Nrf2) in the ischemic myocardium and induced Nrf2-regulated antioxidant enzymes heme oxygenase-1 (HO-1), NADPH dehydrogenase quinone 1 (NQO-1), and thioredoxin reductase (TRXR-1). Improved left ventricular diastolic function and decreased myocardial collagen expression were seen in animals receiving the L. plantarum-applesauce supplements. The expression of endothelial nitric oxide synthase (eNOS) was increased in ischemic myocardial tissue of the treatment group, whereas levels of asymmetric dimethyl arginine (ADMA), hypoxia inducible factor 1α (HIF-1α), and phosphorylated MAPK (pMAPK) were decreased. Collateral-dependent myocardial perfusion was unaffected, whereas arteriolar and capillary densities were reduced as determined by α-smooth muscle cell actin and CD31 immunofluorescence in ischemic myocardial tissue. Dietary supplementation with L. plantarum-applesauce is a safe and effective method of enhancing Nrf2-mediated antioxidant signaling cascade in ischemic myocardium. Although this experimental diet was associated with a reduction in hypoxic stimuli, decreased vascular density, and without any change in collateral-dependent perfusion, the net effect of an increase in antioxidant activity and eNOS expression resulted in improvement in diastolic function.NEW & NOTEWORTHY Colonization of the gut microbiome with certain strains of L. Plantarum has been shown to convert caffeic acid readily available in applesauce to 4-vinyl-catechol, a potent activator of the Nrf2 antioxidant defense pathway. In this exciting study, we show that simple dietary supplementation with L. Plantarum-applesauce-mediated Nrf2 activation supports vascular function, ameliorates myocardial ischemic diastolic dysfunction, and upregulates expression of eNOS.


Assuntos
Lactobacillus plantarum/metabolismo , Isquemia Miocárdica/terapia , Miocárdio/enzimologia , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Probióticos , Disfunção Ventricular Esquerda/terapia , Função Ventricular Esquerda , Ração Animal , Animais , Circulação Coronária , Diástole , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Feminino , Fibrose , Heme Oxigenase-1/metabolismo , Masculino , Densidade Microvascular , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/microbiologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Sus scrofa , Tiorredoxinas/metabolismo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/microbiologia , Disfunção Ventricular Esquerda/fisiopatologia
17.
STAR Protoc ; 2(3): 100753, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34458871

RESUMO

Reactive oxygen species (ROS) are implicated in endothelial dysfunction and cardiovascular disease. Endothelial cells (ECs) produce most ATP through glycolysis rather than oxidative phosphorylation; thus mitochondrial ROS production is lower than in other cell types. This makes quantification of changes in EC mitochondrial oxidative status challenging. Here, we present an optimized protocol using mitochondrial-targeted adenovirus-based redox sensor for ratiometric quantification of specific changes in mitochondrial ROS in live human coronary artery EC. For complete details on the use and execution of this protocol, please refer to Waypa et al. (2010); Liao et al. (2020); Gao et al. (2021).


Assuntos
Vasos Coronários/citologia , Células Endoteliais/citologia , Proteínas de Fluorescência Verde/genética , Mitocôndrias/metabolismo , Biologia Molecular/métodos , Adenoviridae/genética , Células Cultivadas , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mitocôndrias/genética , Biologia Molecular/instrumentação , Espécies Reativas de Oxigênio/metabolismo , Transdução Genética
18.
Am J Physiol Heart Circ Physiol ; 320(5): H1999-H2010, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861149

RESUMO

Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease, or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell-derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery. However, recent revolutionary developments and insight into the potential of personalizing EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.


Assuntos
Vesículas Extracelulares/metabolismo , Insuficiência Cardíaca/metabolismo , Células-Tronco Mesenquimais/metabolismo , Isquemia Miocárdica/metabolismo , Animais , Humanos , Miócitos Cardíacos/metabolismo
19.
J Am Heart Assoc ; 10(4): e017437, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33559477

RESUMO

Background Mesenchymal stem cell-derived extracellular vesicles (EVs) promote angiogenesis in the ischemic myocardium. This study examines the difference in vascular density, myocardial perfusion, molecular signaling, and gene expression between normal diet (ND) and high fat diet (HFD) groups at baseline and following intramyocardial injection of EVs. Methods and Results Intact male Yorkshire swine fed either an ND (n=17) or HFD (n=14) underwent placement of an ameroid constrictor on the left circumflex coronary artery. Subsequently, animals received either intramyocardial injection of vehicle-saline as controls; (ND-controls n=7, HFD-controls, n=6) or EVs; (ND-EVs n=10, HFD-EVs n=8) into the ischemic territory. Five weeks later, myocardial function, perfusion, vascular density, cell signaling, and gene expression were examined. EVs improved indices of myocardial contractile function, myocardial perfusion, and arteriogenesis in both dietary cohorts. Interestingly, quantification of alpha smooth muscle actin demonstrated higher basal arteriolar density in HFD swine compared with their ND counterparts; whereas EVs were associated with increased CD31-labeled endothelial cell density only in the ND tissue, which approached significance. Levels of total endothelial nitric oxide synthase, FOXO1 (forkhead box protein O1) , transforming growth factor-ß, phosphorylated VEGFR2 (vascular endothelial growth factor receptor 2), and phosphorylated MAPK ERK1/ERK2 (mitogen-activated protein kinase) were higher in ischemic myocardial lysates from ND-controls compared with HFD-controls. Conversely, HFD-control tissue showed increased expression of phosphorylated endothelial nitric oxide synthase, phosphorylated FOXO1, VEGFR2, and MAPK ERK1/ERK2 with respect to ND-controls. Preliminary gene expression studies indicate differential modulation of transcriptional activity by EVs between the 2 dietary cohorts. Conclusions HFD produces a profound metabolic disorder that dysregulates the molecular mechanisms of collateral vessel formation in the ischemic myocardium, which may hinder the therapeutic angiogenic effects of EVs.


Assuntos
Indutores da Angiogênese/farmacologia , Circulação Coronária/fisiologia , Vasos Coronários/diagnóstico por imagem , Dieta Hiperlipídica/efeitos adversos , Vesículas Extracelulares/patologia , Isquemia Miocárdica/etiologia , Miocárdio/metabolismo , Animais , Doença Crônica , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Masculino , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/metabolismo , Miocárdio/patologia , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Fosforilação , Suínos
20.
PLoS One ; 15(9): e0238879, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915887

RESUMO

BACKGROUND: Mesenchymal stem cell-derived extracellular vesicles (EVs) appear to be a very exciting treatment option for heart disease. Here, we used a swine model of chronic myocardial ischemia to evaluate the efficacy of a less-invasive method of injection of EVs via a peripheral intravenous route. METHODS: Sixteen Yorkshire swine underwent placement of an ameroid constrictor on the left circumflex (LCx) artery at age 11 weeks to induce chronic myocardial ischemia. Two weeks later, they were divided into two groups: control (CON; n = 8), and intravenous injection of EVs (EVIV; n = 8). At 18 weeks of age, animals underwent final analysis and euthanasia. The chronically ischemic myocardium (LCx territory) was harvested for analysis. RESULTS: Intravenous injection (IV) of EVs induced several pro-angiogenic markers such as MAPK, JNK but not Akt. Whereas IV injections of EVs decreased VEGFR2 expression and inhibited apoptotic signaling (caspase 3), they increased expression of VEGFR1 that is believed to be anti-angiogenic. Injection of EVs did not result in an increase in vessel density and blood flow when compared to the control group. CONCLUSIONS: Although IV injection of EVs upregulated several pro-angiogenic signaling pathways, it failed to induce changes in vascular density in the chronically ischemic myocardium. Thus, a lack of increase in vascular density at the doses tested failed to elicit a functional response in ischemic myocardium.


Assuntos
Modelos Animais de Doenças , Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/citologia , Isquemia Miocárdica/terapia , Neovascularização Fisiológica , Animais , Apoptose , Doença Crônica , Circulação Coronária , Hemodinâmica , Humanos , Masculino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA