Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 289, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845675

RESUMO

MicroRNAs (miRNAs) are small non-coding RNA molecules that play pivotal roles in regulating gene expression and have been implicated in the pathogenesis of numerous cancers. miRNA-3652, though relatively less explored, has recently emerged as a potential key player in ovarian cancer's molecular landscape. This review aims to delineate the functional significance and tumor progression role of miRNA-3652 in ovarian cancer, shedding light on its potential as both a diagnostic biomarker and therapeutic target. A comprehensive literature search was carried out using established databases, the focus was on articles that reported the role of miRNA-3652 in ovarian cancer, encompassing mechanistic insights, functional studies, and its association with clinical outcomes. This updated review highlighted that miRNA-3652 is intricately involved in ovarian cancer cell proliferation, migration, and invasion, its dysregulation was linked to altered expression of critical genes involved in tumor growth and metastasis; furthermore, miRNA-3652 expression levels were found to correlate with clinical stages, prognosis, and response to therapy in ovarian cancer patients. miRNA-3652 holds significant promise as a vital molecular player in ovarian cancer's pathophysiology. Its functional role and impact on tumor progression make it a potential candidate for diagnostic and therapeutic applications in ovarian cancer. Given the pivotal role of miRNA-3652 in ovarian cancer, future studies should emphasize in-depth mechanistic explorations, utilizing advanced genomic and proteomic tools. Collaboration between basic scientists and clinicians will be vital to translating these findings into innovative diagnostic and therapeutic strategies, ultimately benefiting ovarian cancer patients. Video Abstract.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , MicroRNAs/metabolismo , Proteômica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
2.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807549

RESUMO

Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.


Assuntos
Apigenina , Fosfatidilinositol 3-Quinases , Animais , Apigenina/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
3.
J Fungi (Basel) ; 8(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35628700

RESUMO

Saccharomyces cerevisiae var. boulardii is best known for its treatment efficacy against different gastrointestinal diseases. This probiotic yeast can significantly protect the normal microbiota of the human gut and inhibit the pathogenicity of different diarrheal infections. Several clinical investigations have declared S. cerevisiae var. boulardii a biotherapeutic agent due to its antibacterial, antiviral, anti-carcinogenic, antioxidant, anti-inflammatory and immune-modulatory properties. Oral or intramuscular administration of S. cerevisiae var. boulardii can remarkably induce health-promoting effects in the host body. Different intrinsic and extrinsic factors are responsible for its efficacy against acute and chronic gut-associated diseases. This review will discuss the clinical and beneficial effects of S. cerevisiae var. boulardii in the treatment and prevention of different metabolic diseases and highlight some of its health-promising properties. This review article will provide fundamental insights for new avenues in the fields of biotherapeutics, antimicrobial resistance and one health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA