Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; : 104105, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029869

RESUMO

Cancer, a multifaceted and pernicious disease, continuously challenges medicine, requiring innovative treatments. Brain cancers pose unique and daunting challenges due to the intricacies of the central nervous system and the blood-brain barrier. In this era of precision medicine, the convergence of neurology, oncology, and cutting-edge technology has given birth to a promising avenue - targeted cancer therapy. Furthermore, bioinspired microrobots have emerged as an ingenious approach to drug delivery, enabling precision and control in cancer treatment. This Keynote review explores the intricate web of neurological insights into brain-targeted cancer therapy and the paradigm-shifting world of bioinspired microrobots. It serves as a critical and comprehensive overview of these evolving fields, aiming to underscore their integration and potential for revolutionary cancer treatments.

2.
Mol Neurobiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780722

RESUMO

Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, ß-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.

3.
Environ Toxicol ; 39(7): 3991-4003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38606910

RESUMO

In recent times, there has been growing attention towards exploring the nutritional and functional aspects of potato protein, along with its diverse applications. In the present study, we examined the anti-osteoclast properties of potato protein hydrolysate (PP902) in vitro. Murine macrophages (RAW264.7) were differentiated into osteoclasts by receptor activator of nuclear factor-κB ligand (RANKL), and PP902 was examined for its inhibitory effect. Initially, treatment with PP902 was found to significantly prevent RANKL-induced morphological changes in macrophage cells, as determined by tartrate-resistant acid phosphatase (TRAP) staining analysis. This notion was further supported by F-actin analysis using a confocal microscope. Furthermore, PP902 treatment effectively and dose-dependently down-regulated the expression of RANKL-induced osteoclastogenic marker genes, including TRAP, CTR, RANK, NFATc1, OC-STAMP, and c-Fos. These inhibitory effects were associated with suppressing NF-κB transcriptional activation and subsequent reduced nuclear translocation. The decrease in NF-κB activity resulted from reduced activation of its upstream kinases, including I-κBα and IKKα. Moreover, PP902 significantly inhibited RANKL-induced p38MAPK and ERK1/2 activities. Nevertheless, PP902 treatment prevents RANKL-induced intracellular reactive oxygen species generation via increased HO-1 activity. The combined antioxidant and anti-inflammatory effects of PP902 resulted in significant suppression of osteoclastogenesis, suggesting its potential as an adjuvant therapy for osteoclast-related diseases.


Assuntos
NF-kappa B , Osteoclastos , Hidrolisados de Proteína , Ligante RANK , Solanum tuberosum , Animais , Camundongos , Osteoclastos/efeitos dos fármacos , Células RAW 264.7 , NF-kappa B/metabolismo , Hidrolisados de Proteína/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Plantas/farmacologia
4.
Biomed Pharmacother ; 174: 116376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508080

RESUMO

Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aß biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.


Assuntos
Doença de Alzheimer , Polifenóis , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/metabolismo , Polifenóis/farmacologia , Humanos , Animais , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Nanopartículas/química , Dieta , Peptídeos beta-Amiloides/metabolismo , Disponibilidade Biológica
5.
Ageing Res Rev ; 98: 102224, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38346505

RESUMO

Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble ß-amyloid peptide (Aß) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.


Assuntos
Envelhecimento , Doença de Alzheimer , Barreira Hematoencefálica , Humanos , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Fatores de Risco
6.
J Cancer ; 15(1): 113-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164272

RESUMO

Background: Exposure to the Hepatitis C virus (HCV) has been identified as one of the most critical risk factors for Hepatocellular carcinoma (HCC). Interferons and direct-acting antivirals (DAAs) have been used to treat HCV infection with high rates (95%) of prolonged virological response, a suitable safety profile, and good compliance rates. Methods: We obtained information from Taiwan's Health and Welfare Data Science Center. (HWDSC). In this observational cohort research, patients with HCV who received a diagnosis in Taiwan between 2011 and 2018 were included. Results: 78,300 untreated HCV patients were paired for age, sex, and index date with 39,150 HCV patients who received interferon or DAAs treatment. Compared to the control group, the Interferon or DAAs treatment sample has fewer low-income individuals and more hospitalization requirements. The percentage of kidney illness was reduced in the therapy group compared to the control group, but the treatment group had a greater comorbidity rate of gastric ulcers. Interferon or DAA therapy for HCV-infected patients can substantially lower mortality. All cancer diagnoses after HCV infection with interferon treatment aHR 95% CI = 0.809 (0.774-0.846), Sofosbuvir-based DAA aHR 95% CI = 1.009 (0.737-1.381) and Sofosbuvir free DAA aHR 95% CI = 0.944 (0.584-1.526) showing cancer-protective effects in the INF-treated cohort but not DAA. Conclusion: Following antiviral therapy, women appear to have a more substantial preventive impact than men against pancreatic, colorectal, and lung cancer. Interferon or DAAs treatment effect was more significant in the cirrhotic group.

7.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686036

RESUMO

Head and neck squamous cell carcinoma (HNSCC) are associated with recurrence, distant metastasis, and poor overall survival. This highlights the need for identifying potential therapeutics with minimal side-effects. The present study was designed to investigate the anticancer effects of picrasidine J, a dimeric ß-carboline-type alkaloid isolated from the southern Asian plant Picrasma quassioides. The results showed that picrasidine J significantly inhibits HNSCC cell motility, migration, and invasion. Specifically, picrasidine J inhibited the EMT process by upregulating E-cadherin and ZO-1 and downregulating beta-catenin and Snail. Moreover, picrasidine J reduced the expression of the serine protease KLK-10. At the signaling level, the compound reduced the phosphorylation of ERK. All these factors collectively facilitated the inhibition of HNSCC metastasis with picrasidine J. Taken together, the study identifies picrasidine J as a potential anticancer compound of plant origin that might be used clinically to prevent the distant metastasis and progression of HNSCC.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias de Cabeça e Pescoço , Picrasma , Carcinoma de Células Escamosas de Cabeça e Pescoço , Alcaloides/farmacologia , Carbolinas , Antineoplásicos/farmacologia , Polímeros , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
8.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901935

RESUMO

Oral squamous cell carcinoma (OSCC) is the sixth most common type of cancer worldwide. Despite advancement in treatment, advanced-stage OSCC is associated with poor prognosis and high mortality. The present study aimed to investigate the anticancer activities of semilicoisoflavone B (SFB), which is a natural phenolic compound isolated from Glycyrrhiza species. The results revealed that SFB reduces OSCC cell viability by targeting cell cycle and apoptosis. The compound caused cell cycle arrest at the G2/M phase and downregulated the expressions of cell cycle regulators including cyclin A and cyclin-dependent kinase (CDK) 2, 6, and 4. Moreover, SFB induced apoptosis by activating poly-ADP-ribose polymerase (PARP) and caspases 3, 8, and 9. It increased the expressions of pro-apoptotic proteins Bax and Bak, reduced the expressions of anti-apoptotic proteins Bcl-2 and Bcl-xL, and increased the expressions of the death receptor pathway protein Fas cell surface death receptor (FAS), Fas-associated death domain protein (FADD), and TNFR1-associated death domain protein (TRADD). SFB was found to mediate oral cancer cell apoptosis by increasing reactive oxygen species (ROS) production. The treatment of the cells with N-acetyl cysteine (NAC) caused a reduction in pro-apoptotic potential of SFB. Regarding upstream signaling, SFB reduced the phosphorylation of AKT, ERK1/2, p38, and JNK1/2 and suppressed the activation of Ras, Raf, and MEK. The human apoptosis array conducted in the study identified that SFB downregulated survivin expression to induce oral cancer cell apoptosis. Taken together, the study identifies SFB as a potent anticancer agent that might be used clinically to manage human OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinases de Proteína Quinase Ativadas por Mitógeno , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas ras/efeitos dos fármacos , Proteínas ras/metabolismo , Proteínas Proto-Oncogênicas c-raf/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/metabolismo
9.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431802

RESUMO

Hypertension is a chronic disease related to age, which affects tens of millions of people around the world. It is an important risk factor that causes myocardial infarction, heart failure, stroke, and kidney damage. Bioactive peptide VHVV (VH-4) from soybean has shown several biological activities. Physical exercise is a cornerstone of non-pharmacologic treatment for hypertension and has established itself as an effective and complementary strategy for managing hypertension. The present study evaluates the efficacy of VH-4 supplement and swimming exercise training in preventing hypertension in spontaneously hypertensive rats (SHR). SHR animals were treated with VH-4 (25 mg/kg by intraperitoneal administration) and swimming exercise (1 h daily) for eight weeks, and the hemodynamic parameters, histology, and cell survival pathway protein expression were examined. In SHR rats, increased heart weight, blood pressure, and histological aberrations were observed. Cell survival protein p-PI3K and p-AKT and antiapoptosis proteins Bcl2 and Bcl-XL expression decreased in SHR animals. SIRT1 and FOXO3 were decreased in hypertensive rats. Both bioactive peptide VH-4 treatment and swimming exercise training in hypertensive rats increased the cell survival proteins p-PI3K and p-AKT and AMPKα1, Sirt1, PGC1α, and FoX3α proteins. Soy peptide VH-4, along with exercise, acts synergistically and prevents hypertension by activating cell survival and AMPKα1, Sirt1, PGC1α, and FoX3α proteins.


Assuntos
Fabaceae , Hipertensão , Condicionamento Físico Animal , Ratos , Animais , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Glycine max/metabolismo , Sobrevivência Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos SHR , Peptídeos/farmacologia , Peptídeos/metabolismo , Fabaceae/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
10.
Antioxidants (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139872

RESUMO

This study aimed to investigate the impact of dietary addition of lavender essential oil (Lavandula angustifolia L.) (LEO) on the growth performance, tissue histoarchitecture, and fatty acid profile in breast muscles, as well as blood biochemistry and immune expression of pro-inflammatory cytokines of broiler chickens. A total of 200 three-day-old broiler chickens (average body weight 101.3 ± 0.24 g) were assigned to a completely randomized design consisting of four dietary treatments (n = 50 per treatment, each replicate consisting of 10 birds) that included lavender essential oil at concentrations of 0 (control group), 200, 400, and 600 mg Kg−1 diet. The experiment lasted for 35 days. The results revealed that supplementation of lavender essential oil at 200, 400, or 600 mg/kg in broiler diets had no effect (p > 0.05) on the growth performance throughout the experimental periods (3−10, 11−23, and 24−35 days of age). According to the broken line regression model, the optimal level for dietary LEO addition was the 460 mg kg−1 diet based on the total body weight gain and feed conversion ratio results. The diets supplemented with lavender essential oil had no effect (p > 0.05) on the percentages of carcass yield or internal organs. Dietary addition of LEO significantly increased the percentages of omega-3 polyunsaturated fatty acids PUFA (n-3), omega-6 polyunsaturated fatty acids (n-6), and the n-3/n-6 ratio (p < 0.05) in the breast muscles of chickens in a level-dependent manner. The blood concentration of alanine aminotransferase was significantly increased in lavender essential oil at 600 mg kg−1 compared with other treatments. The dietary addition of LEO at 200, 400, and 600 mg kg−1 significantly reduced the malondialdehyde level. Still, they significantly increased the serum enzyme activities of total antioxidant capacity, catalase, superoxide dismutase, and the pro-inflammatory cytokine (interleukine-1 beta and interferon γ) compared with the unsupplemented group. The LEO-supplemented groups showed normal liver histomorphology as in the control group. However, the immunoexpression of the pro-inflammatory cytokine transforming growth factor ß was significantly increased by increasing the level of LEO. It can be concluded that lavender essential oil can be included in broiler chicken diets up to 460 mg kg −1 with no positive effect on the bird's growth. It can improve the antioxidant capacity and enrich the breast muscles with PUFA. An increased level of supplementation (600 mg kg−1) increased the inflammatory responses in broiler chickens.

11.
J Pers Med ; 12(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35455754

RESUMO

Diabetes mellitus constitutes a big challenge to the global health care system due to its socioeconomic impacts and very serious complications. The incidence and the prevalence rate are increased in the Gulf region including the KSA. Type 2 diabetes mellitus (T2DM) is caused by diverse risk factors including obesity, unhealthy dietary habits, physical inactivity, smoking and genetic factors. The molecular genetic studies have helped in the detection of many single nucleotide polymorphisms (SNP) with different diseases including cancers, cardiovascular diseases and T2DM. The glyoxalase 1 (GLO1) is a detoxifying enzyme and catalyzes the elimination of the cytotoxic product methylglyoxal (MG) by converting it to D-lactate, which is not toxic to tissues. MG accumulation is associated with the pathogenesis of different diseases including T2DM. In this study, we have investigated the association of the glyoxalase 1 SNPs (rs2736654) rs4746 C>A and rs1130534 T>A with T2DM using the amplification refractory mutation system PCR. We also measured the concentration of MG by ELISA in T2DM patients and matched heathy controls. Results show that the CA genotype of the GLO rs4647 A>C was associated with T2DM with OR = 2.57, p-value 0.0008 and the C allele was also associated with increased risk to T2DM with OR = 2.24, p-value = 0.0001. It was also observed that AT genotype of the rs1130534 was associated with decreased susceptibility to T2DM with OR = 0.3, p-value = 0.02. The A allele of rs1130534 was also associated with reduced risk to T2DM with PR = 0.27 = 0.006. In addition, our ELISA results demonstrate significantly increased MG concentrations in serum of the T2DM patients. We conclude that the GLO1 SNP may be associated with decreased enzyme activity and a resultant susceptibility to T2DM. Further well-designed studies in different and large patient populations are recommended to verify these findings.

12.
Semin Cancer Biol ; 86(Pt 2): 1086-1104, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35218902

RESUMO

Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-ß/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles (NPs) in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded NPs have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.


Assuntos
Nanomedicina , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Compreensão , Recidiva Local de Neoplasia , Transdução de Sinais , Inflamação/tratamento farmacológico
13.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358102

RESUMO

The presence of small subpopulations of cells within tumor cells are known as cancer stem cells (CSCs). These cells have been the reason for metastasis, resistance with chemotherapy or radiotherapy, and tumor relapse in several types of cancers. CSCs underwent to epithelial-mesenchymal transition (EMT) and resulted in the development of aggressive tumors. CSCs have potential to modulate numerous signaling pathways including Wnt, Hh, and Notch, therefore increasing the stem-like characteristics of cancer cells. The raised expression of drug efflux pump and suppression of apoptosis has shown increased resistance with anti-cancer drugs. Among many agents which were shown to modulate these, the plant-derived bioactive agents appear to modulate these key regulators and were shown to remove CSCs. This review aims to comprehensively scrutinize the preclinical and clinical studies demonstrating the effects of phytocompounds on CSCs isolated from various tumors. Based on the available convincing literature from preclinical studies, with some clinical data, it is apparent that selective targeting of CSCs with plants, plant preparations, and plant-derived bioactive compounds, termed phytochemicals, may be a promising strategy for the treatment of relapsed cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA