Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 4953, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654123

RESUMO

Invasion of periodontal tissues by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can be associated with aggressive forms of periodontitis. Oleoresins from different copaifera species and their compounds display various pharmacological properties. The present study evaluates the antibacterial and antivirulence activity of oleoresins obtained from different copaifera species and of ten isolated compounds against two causative agents of periodontitis. The following assays were performed: determination of the minimum inhibitory concentration (MIC), determination of the minimum bactericidal concentration (MBC), and determination of the antibiofilm activity by inhibition of biofilm formation and biofilm eradication tests. The antivirulence activity was assessed by hemagglutination, P. gingivalis Arg-X and Lis-X cysteine protease inhibition assay, and A. actinomycetemcomitans leukotoxin inhibition assay. The MIC and MBC of the oleoresins and isolated compounds 1, 2, and 3 ranged from 1.59 to 50 µg/mL against P. gingivalis (ATCC 33277) and clinical isolates and from 6.25 to 400 µg/mL against A. actinomycetemcomitans (ATCC 43717) and clinical isolates. About the antibiofilm activity, the oleoresins and isolated compounds 1, 2, and 3 inhibited biofilm formation by at least 50% and eradicated pre-formed P. gingivalis and A. actinomycetemcomitans biofilms in the monospecies and multispecies modes. A promising activity concerning cysteine protease and leucotoxin inhibition was also evident. In addition, molecular docking analysis was performed. The investigated oleoresins and their compounds may play an important role in the search for novel sources of agents that can act against periodontal pathogens.


Assuntos
Aggregatibacter actinomycetemcomitans/fisiologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fabaceae/química , Extratos Vegetais/farmacologia , Porphyromonas gingivalis/fisiologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Extratos Vegetais/química
2.
Arch Oral Biol ; 110: 104585, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31838294

RESUMO

This study aimed to evaluate the in vitro activity of the crude extracts obtained from Caesalpinia ferrea Mart. (Jucá), Cinnamomum cassia B. (Cinnamon), Mallow sylvestris L. (Mallow), Punica granatum L. (Pomegranate), Rosmarinus officinalis L. (Rosemary), Aeolanthus suaveolens (Als.) Spreng. (Macassá), Sysygium aromaticum L. (Clove), and Tamarindus indica L. (Tamarind) against oral microorganisms (e.g., Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and Parvimonas micra) that produce volatile sulfur compounds (VSC). The pure extracts were placed in culture medium for the diffusion test in agar. The Minimum Inhibitory Concentration (MIC) was determined by the microdilution method, and microbial growth was assayed with resazurin. Total polyphenols in the extracts were measured by using the Prussian Blue Method. For the salivary sediment test, the sediments were exposed to the Jucá and Pomegranate extracts, which was followed by incubation and organoleptic measurements with a monitor (Halimeter®) at 1-, 2-, 4-, and 24 -h intervals. The diffusion test revealed mixed results for the extracts. When the zone of inhibition was present, it ranged from 1.6-10.3 mm. The Pomegranate extract was the only extract that inhibited all the evaluated microorganisms; the MIC values ranged from 50 to 400 µg/mL. The Pomegranate and Jucá extracts presented higher levels of polyphenols, 7.3 % and 3.9 %, respectively, and less VSC formation as compared to the negative control. In conclusion, the extracts display antimicrobial activity against the tested microorganisms. The investigated plants have the potential to reduce the main substances related to halitosis of oral origin.


Assuntos
Antibacterianos , Halitose , Extratos Vegetais , Plantas Medicinais , Prevotella intermedia , Halitose/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
3.
Foodborne Pathog Dis ; 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30230926

RESUMO

Foodborne diseases (FBDs) are a serious public health concern worldwide. In this scenario, preservatives based on natural products, especially plants, have attracted researchers' attention because they offer potential antimicrobial action as well as reduced health impact. The genus Copaifera spp., which is native of tropical South America and West Africa, contains several species for which pharmacological activities, including antibacterial effects, have been described. On the basis of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antibiofilm activity (inhibition and eradication), preservative capacity, and Ames test, we evaluated the antibacterial, preservative, and mutagenic potential of Copaifera spp. oleoresins against the causative agents of FBDs. The Copaifera duckei, Copaifera reticulata, Copaifera paupera, and Copaifera pubiflora oleoresins displayed promising MIC/MBC values-from 12.5 to 100 µg/mL-against Staphylococcus aureus (American Type Culture Collection [ATCC] 29213), Listeria monocytogenes (ATCC 15313), and Bacillus cereus (ATCC 14579). C. duckei, C. reticulata, C. paupera, and C. pubiflora oleoresin concentrations ranging from 25 to 200 µg/mL and from 100 to 400 µg/mL inhibited biofilm formation and eradicated biofilms, respectively. The oleoresins did not exert mutagenic effects and had superior food preservative action to sodium benzoate (positive control). In conclusion, Copaifera oleoresins exhibit potential antibacterial activity and are not mutagenic, which makes them a promising source to develop novel natural food preservatives to inhibit foodborne pathogens.

4.
Front Microbiol ; 9: 201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515530

RESUMO

This study evaluates the antibacterial activity of the Copaifera duckei Dwyer oleoresin and two isolated compounds [eperu-8(20)-15,18-dioic acid and polyalthic acid] against bacteria involved in primary endodontic infections and dental caries and assesses the cytotoxic effect of these substances against a normal cell line. MIC and MBC assays pointed out the most promising metabolites for further studies on bactericidal kinetics, antibiofilm activity, and synergistic antibacterial action. The oleoresin and polyalthic acid but not eperu-8(20)-15,18-dioic provided encouraging MIC and MBC results at concentrations lower than 100 µg mL-1. The oleoresin and polyalthic acid activities depended on the evaluated strain. A bactericidal effect on Lactobacillus casei (ATCC 11578 and clinical isolate) emerged before 8 h of incubation. For all the tested bacteria, the oleoresin and polyalthic acid inhibited biofilm formation by at least 50%. The oleoresin and polyalthic acid gave the best activity against Actinomyces naeslundii (ATCC 19039) and L. casei (ATCC 11578), respectively. The synergistic assays combining the oleoresin or polyalthic acid with chlorhexidine did not afford interesting results. We examined the cytotoxicity of C. duckei oleoresin, eperu-8(20)-15,18-dioic acid, and polyalthic acid against Chinese hamster lung fibroblasts. The oleoresin and polyalthic acid were cytotoxic at concentrations above 78.1 µg mL-1, whereas eperu-8(20)-15,18-dioic displayed cytotoxicity at concentrations above 312.5 µg mL-1. In conclusion, the oleoresin and polyalthic acid are potential sources of antibacterial agents against bacteria involved in primary endodontic infections and dental caries in both the sessile and the planktonic modes at concentrations that do not cause cytotoxicity.

5.
BMC Complement Altern Med ; 15: 443, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691920

RESUMO

BACKGROUND: Natural products display numerous therapeutic properties (e.g., antibacterial activity), providing the population with countless benefits. Therefore, the search for novel biologically active, naturally occurring compounds is extremely important. The present paper describes the antibacterial action of the Copaifera langsdorffii oleoresin and ten compounds isolated from this oleoresin against multiresistant bacteria; it also reports the antiproliferative activity of the Copaifera langsdorffii oleoresin and (-)-copalic acid. METHODS: MICs and MBCs were used to determine the antibacterial activity. Time-kill curve assays provided the time that was necessary for the bacteria to die. The Minimum Inhbitory Concentration of Biofilm (CIMB50) of the compounds that displayed the best results was calculated. Cytotoxicity was measured by using the XTT assay. RESULTS: The diterpene (-)-copalic acid was the most active antibacterial and afforded promising Minimum Inhibitory Concentration (MIC) values for most of the tested strains. Determination of the bactericidal kinetics against some bacteria revealed that the bactericidal effect emerged within six hours of incubation for Streptococcus pneumoniae. Concerning the antibiofilm action of this diterpene, its MICB50 was twofold larger than its CBM against S. capitis and S. pneumoniae. The XTT assay helped to evaluate the cytotoxic effect; results are expressed as IC50. The most pronounced antiproliferative effect arose in tumor cell lines treated with (-)-copalic acid; the lowest IC50 value was found for the human glioblastoma cell line. CONCLUSIONS: The diterpene (-)-copalic acid is a potential lead for the development of new selective antimicrobial agents to treat infections caused by Gram-positive multiresistant microorganisms, in both the sessile and planktonic mode. This diterpene is also a good candidate to develop anticancer drugs.


Assuntos
Antibacterianos/farmacologia , Proliferação de Células/efeitos dos fármacos , Fabaceae/química , Inibidores do Crescimento/farmacologia , Neoplasias/fisiopatologia , Extratos Vegetais/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Inibidores do Crescimento/química , Inibidores do Crescimento/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Streptococcus/efeitos dos fármacos , Streptococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA