Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Stroke ; 54(3): 810-818, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36655558

RESUMO

BACKGROUND: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. METHODS: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. RESULTS: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (ß=-4.82×10-3 per year [95% CI, -6.49×10-3 to -3.14×10-3]; P=1.82×10-8), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). CONCLUSIONS: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH.


Assuntos
Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/complicações , Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/complicações , Fatores de Risco , Fumar/epidemiologia , Fumar/efeitos adversos , Incidência
3.
PLoS Med ; 18(1): e1003498, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444330

RESUMO

BACKGROUND: Polygenic risk scores (PRSs) can stratify populations into cardiovascular disease (CVD) risk groups. We aimed to quantify the potential advantage of adding information on PRSs to conventional risk factors in the primary prevention of CVD. METHODS AND FINDINGS: Using data from UK Biobank on 306,654 individuals without a history of CVD and not on lipid-lowering treatments (mean age [SD]: 56.0 [8.0] years; females: 57%; median follow-up: 8.1 years), we calculated measures of risk discrimination and reclassification upon addition of PRSs to risk factors in a conventional risk prediction model (i.e., age, sex, systolic blood pressure, smoking status, history of diabetes, and total and high-density lipoprotein cholesterol). We then modelled the implications of initiating guideline-recommended statin therapy in a primary care setting using incidence rates from 2.1 million individuals from the Clinical Practice Research Datalink. The C-index, a measure of risk discrimination, was 0.710 (95% CI 0.703-0.717) for a CVD prediction model containing conventional risk predictors alone. Addition of information on PRSs increased the C-index by 0.012 (95% CI 0.009-0.015), and resulted in continuous net reclassification improvements of about 10% and 12% in cases and non-cases, respectively. If a PRS were assessed in the entire UK primary care population aged 40-75 years, assuming that statin therapy would be initiated in accordance with the UK National Institute for Health and Care Excellence guidelines (i.e., for persons with a predicted risk of ≥10% and for those with certain other risk factors, such as diabetes, irrespective of their 10-year predicted risk), then it could help prevent 1 additional CVD event for approximately every 5,750 individuals screened. By contrast, targeted assessment only among people at intermediate (i.e., 5% to <10%) 10-year CVD risk could help prevent 1 additional CVD event for approximately every 340 individuals screened. Such a targeted strategy could help prevent 7% more CVD events than conventional risk prediction alone. Potential gains afforded by assessment of PRSs on top of conventional risk factors would be about 1.5-fold greater than those provided by assessment of C-reactive protein, a plasma biomarker included in some risk prediction guidelines. Potential limitations of this study include its restriction to European ancestry participants and a lack of health economic evaluation. CONCLUSIONS: Our results suggest that addition of PRSs to conventional risk factors can modestly enhance prediction of first-onset CVD and could translate into population health benefits if used at scale.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco de Doenças Cardíacas , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Medição de Risco , Reino Unido/epidemiologia
4.
Nat Commun ; 10(1): 5819, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862893

RESUMO

Recent genome-wide association studies in stroke have enabled the generation of genomic risk scores (GRS) but their predictive power has been modest compared to established stroke risk factors. Here, using a meta-scoring approach, we develop a metaGRS for ischaemic stroke (IS) and analyse this score in the UK Biobank (n = 395,393; 3075 IS events by age 75). The metaGRS hazard ratio for IS (1.26, 95% CI 1.22-1.31 per metaGRS standard deviation) doubles that of a previous GRS, identifying a subset of individuals at monogenic levels of risk: the top 0.25% of metaGRS have three-fold risk of IS. The metaGRS is similarly or more predictive compared to several risk factors, such as family history, blood pressure, body mass index, and smoking. We estimate the reductions needed in modifiable risk factors for individuals with different levels of genomic risk and suggest that, for individuals with high metaGRS, achieving risk factor levels recommended by current guidelines may be insufficient to mitigate risk.


Assuntos
Isquemia Encefálica/epidemiologia , Predisposição Genética para Doença , Genômica/métodos , Idoso , Pressão Sanguínea , Índice de Massa Corporal , Isquemia Encefálica/genética , Comorbidade , Conjuntos de Dados como Assunto , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Anamnese , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Medição de Risco/métodos , Fumar/epidemiologia , Reino Unido/epidemiologia
5.
Hum Mol Genet ; 28(R2): R133-R142, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31363735

RESUMO

Prediction of disease risk is an essential part of preventative medicine, often guiding clinical management. Risk prediction typically includes risk factors such as age, sex, family history of disease and lifestyle (e.g. smoking status); however, in recent years, there has been increasing interest to include genomic information into risk models. Polygenic risk scores (PRS) aggregate the effects of many genetic variants across the human genome into a single score and have recently been shown to have predictive value for multiple common diseases. In this review, we summarize the potential use cases for seven common diseases (breast cancer, prostate cancer, coronary artery disease, obesity, type 1 diabetes, type 2 diabetes and Alzheimer's disease) where PRS has or could have clinical utility. PRS analysis for these diseases frequently revolved around (i) risk prediction performance of a PRS alone and in combination with other non-genetic risk factors, (ii) estimation of lifetime risk trajectories, (iii) the independent information of PRS and family history of disease or monogenic mutations and (iv) estimation of the value of adding a PRS to specific clinical risk prediction scenarios. We summarize open questions regarding PRS usability, ancestry bias and transferability, emphasizing the need for the next wave of studies to focus on the implementation and health-economic value of PRS testing. In conclusion, it is becoming clear that PRS have value in disease risk prediction and there are multiple areas where this may have clinical utility.


Assuntos
Predisposição Genética para Doença , Herança Multifatorial , Doença de Alzheimer/genética , Neoplasias da Mama/genética , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Predisposição Genética para Doença/prevenção & controle , Estudo de Associação Genômica Ampla , Humanos , Masculino , Anamnese , Obesidade/genética , Neoplasias da Próstata/genética , Reprodutibilidade dos Testes , Fatores de Risco
6.
J Am Coll Cardiol ; 72(16): 1883-1893, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30309464

RESUMO

BACKGROUND: Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes. OBJECTIVES: This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening tool for primary prevention. METHODS: Using a meta-analytic approach to combine large-scale, genome-wide, and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS) consisting of 1.7 million genetic variants. We externally tested metaGRS, both by itself and in combination with available data on conventional risk factors, in 22,242 CAD cases and 460,387 noncases from the UK Biobank. RESULTS: The hazard ratio (HR) for CAD was 1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD increase in metaGRS, an association larger than any other externally tested genetic risk score previously published. The metaGRS stratified individuals into significantly different life course trajectories of CAD risk, with those in the top 20% of metaGRS distribution having an HR of 4.17 (95% CI: 3.97 to 4.38) compared with those in the bottom 20%. The corresponding HR was 2.83 (95% CI: 2.61 to 3.07) among individuals on lipid-lowering or antihypertensive medications. The metaGRS had a higher C-index (C = 0.623; 95% CI: 0.615 to 0.631) for incident CAD than any of 6 conventional factors (smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family history). For men in the top 20% of metaGRS with >2 conventional factors, 10% cumulative risk of CAD was reached by 48 years of age. CONCLUSIONS: The genomic score developed and evaluated here substantially advances the concept of using genomic information to stratify individuals with different trajectories of CAD risk and highlights the potential for genomic screening in early life to complement conventional risk prediction.


Assuntos
Doença da Artéria Coronariana , Genômica , Prevenção Primária/métodos , Medição de Risco/métodos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Feminino , Estudo de Associação Genômica Ampla , Genômica/métodos , Genômica/estatística & dados numéricos , Humanos , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Herança Multifatorial , Valor Preditivo dos Testes , Projetos de Pesquisa , Fatores de Risco , Reino Unido/epidemiologia
7.
PLoS One ; 12(3): e0172826, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282431

RESUMO

Interaction analysis of GWAS can detect signal that would be ignored by single variant analysis, yet few robust interactions in humans have been detected. Recent work has highlighted interactions in the MHC region between known HLA risk haplotypes for various autoimmune diseases. To better understand the genetic interactions underlying celiac disease (CD), we have conducted exhaustive genome-wide scans for pairwise interactions in five independent CD case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 14 independent interaction signals within the MHC region that achieved stringent replication criteria across multiple studies and were independent of known CD risk HLA haplotypes. The strongest independent CD interaction signal corresponded to genes in the HLA class III region, in particular PRRC2A and GPANK1/C6orf47, which are known to contain variants for non-Hodgkin's lymphoma and early menopause, co-morbidities of celiac disease. Replicable evidence for statistical interaction outside the MHC was not observed. Both within and between European populations, we observed striking consistency of two-locus models and model distribution. Within the UK population, models of CD based on both interactions and additive single-SNP effects increased explained CD variance by approximately 1% over those of single SNPs. The interactions signal detected across the five cohorts indicates the presence of novel associations in the MHC region that cannot be detected using additive models. Our findings have implications for the determination of genetic architecture and, by extension, the use of human genetics for validation of therapeutic targets.


Assuntos
Doença Celíaca/genética , Complexo Principal de Histocompatibilidade/genética , Alelos , Área Sob a Curva , Estudos de Casos e Controles , Doença Celíaca/imunologia , Doença Celíaca/patologia , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Desequilíbrio de Ligação , Linfoma não Hodgkin/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Curva ROC , Risco , Máquina de Vetores de Suporte
8.
Eur Heart J ; 37(43): 3267-3278, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27655226

RESUMO

AIMS: Genetics plays an important role in coronary heart disease (CHD) but the clinical utility of genomic risk scores (GRSs) relative to clinical risk scores, such as the Framingham Risk Score (FRS), is unclear. Our aim was to construct and externally validate a CHD GRS, in terms of lifetime CHD risk and relative to traditional clinical risk scores. METHODS AND RESULTS: We generated a GRS of 49 310 SNPs based on a CARDIoGRAMplusC4D Consortium meta-analysis of CHD, then independently tested it using five prospective population cohorts (three FINRISK cohorts, combined n = 12 676, 757 incident CHD events; two Framingham Heart Study cohorts (FHS), combined n = 3406, 587 incident CHD events). The GRS was associated with incident CHD (FINRISK HR = 1.74, 95% confidence interval (CI) 1.61-1.86 per S.D. of GRS; Framingham HR = 1.28, 95% CI 1.18-1.38), and was largely unchanged by adjustment for known risk factors, including family history. Integration of the GRS with the FRS or ACC/AHA13 scores improved the 10 years risk prediction (meta-analysis C-index: +1.5-1.6%, P < 0.001), particularly for individuals ≥60 years old (meta-analysis C-index: +4.6-5.1%, P < 0.001). Importantly, the GRS captured substantially different trajectories of absolute risk, with men in the top 20% of attaining 10% cumulative CHD risk 12-18 y earlier than those in the bottom 20%. High genomic risk was partially compensated for by low systolic blood pressure, low cholesterol level, and non-smoking. CONCLUSIONS: A GRS based on a large number of SNPs improves CHD risk prediction and encodes different trajectories of lifetime risk not captured by traditional clinical risk scores.


Assuntos
Doença das Coronárias , Feminino , Genômica , Cardiopatias , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Medição de Risco , Fatores de Risco
9.
Genet Epidemiol ; 37(2): 184-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23203348

RESUMO

A central goal of medical genetics is to accurately predict complex disease from genotypes. Here, we present a comprehensive analysis of simulated and real data using lasso and elastic-net penalized support-vector machine models, a mixed-effects linear model, a polygenic score, and unpenalized logistic regression. In simulation, the sparse penalized models achieved lower false-positive rates and higher precision than the other methods for detecting causal SNPs. The common practice of prefiltering SNP lists for subsequent penalized modeling was examined and shown to substantially reduce the ability to recover the causal SNPs. Using genome-wide SNP profiles across eight complex diseases within cross-validation, lasso and elastic-net models achieved substantially better predictive ability in celiac disease, type 1 diabetes, and Crohn's disease, and had equivalent predictive ability in the rest, with the results in celiac disease strongly replicating between independent datasets. We investigated the effect of linkage disequilibrium on the predictive models, showing that the penalized methods leverage this information to their advantage, compared with methods that assume SNP independence. Our findings show that sparse penalized approaches are robust across different disease architectures, producing as good as or better phenotype predictions and variance explained. This has fundamental ramifications for the selection and future development of methods to genetically predict human disease.


Assuntos
Doença/genética , Modelos Genéticos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Artrite Reumatoide/genética , Estudos de Casos e Controles , Doença Celíaca/genética , Doença da Artéria Coronariana/genética , Doença de Crohn/genética , Diabetes Mellitus Tipo 1/genética , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Modelos Logísticos , Reprodutibilidade dos Testes
10.
BMC Bioinformatics ; 12: 84, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21435268

RESUMO

BACKGROUND: Many different microarray experiments are publicly available today. It is natural to ask whether different experiments for the same phenotypic conditions can be combined using meta-analysis, in order to increase the overall sample size. However, some genes are not measured in all experiments, hence they cannot be included or their statistical significance cannot be appropriately estimated in traditional meta-analysis. Nonetheless, these genes, which we refer to as incomplete genes, may also be informative and useful. RESULTS: We propose a meta-analysis framework, called "Incomplete Gene Meta-analysis", which can include incomplete genes by imputing the significance of missing replicates, and computing a meta-score for every gene across all datasets. We demonstrate that the incomplete genes are worthy of being included and our method is able to appropriately estimate their significance in two groups of experiments. We first apply the Incomplete Gene Meta-analysis and several comparable methods to five breast cancer datasets with an identical set of probes. We simulate incomplete genes by randomly removing a subset of probes from each dataset and demonstrate that our method consistently outperforms two other methods in terms of their false discovery rate. We also apply the methods to three gastric cancer datasets for the purpose of discriminating diffuse and intestinal subtypes. CONCLUSIONS: Meta-analysis is an effective approach that identifies more robust sets of differentially expressed genes from multiple studies. The incomplete genes that mainly arise from the use of different platforms may also have statistical and biological importance but are ignored or are not appropriately involved by previous studies. Our Incomplete Gene Meta-analysis is able to incorporate the incomplete genes by estimating their significance. The results on both breast and gastric cancer datasets suggest that the highly ranked genes and associated GO terms produced by our method are more significant and biologically meaningful according to the previous literature.


Assuntos
Perfilação da Expressão Gênica/métodos , Metanálise como Assunto , Modelos Lineares , Análise de Sequência com Séries de Oligonucleotídeos
11.
BMC Bioinformatics ; 11: 277, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20500821

RESUMO

BACKGROUND: Different microarray studies have compiled gene lists for predicting outcomes of a range of treatments and diseases. These have produced gene lists that have little overlap, indicating that the results from any one study are unstable. It has been suggested that the underlying pathways are essentially identical, and that the expression of gene sets, rather than that of individual genes, may be more informative with respect to prognosis and understanding of the underlying biological process. RESULTS: We sought to examine the stability of prognostic signatures based on gene sets rather than individual genes. We classified breast cancer cases from five microarray studies according to the risk of metastasis, using features derived from predefined gene sets. The expression levels of genes in the sets are aggregated, using what we call a set statistic. The resulting prognostic gene sets were as predictive as the lists of individual genes, but displayed more consistent rankings via bootstrap replications within datasets, produced more stable classifiers across different datasets, and are potentially more interpretable in the biological context since they examine gene expression in the context of their neighbouring genes in the pathway. In addition, we performed this analysis in each breast cancer molecular subtype, based on ER/HER2 status. The prognostic gene sets found in each subtype were consistent with the biology based on previous analysis of individual genes. CONCLUSIONS: To date, most analyses of gene expression data have focused at the level of the individual genes. We show that a complementary approach of examining the data using predefined gene sets can reduce the noise and could provide increased insight into the underlying biological pathways.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Feminino , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA