Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072048

RESUMO

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mecanotransdução Celular , Miofibroblastos , Proteína A4 de Ligação a Cálcio da Família S100 , Animais , Camundongos , Transdiferenciação Celular , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
2.
J Intensive Care Med ; 39(4): 313-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37724016

RESUMO

Purpose: We sought to evaluate critically ill patients with delirium to evaluate inflammatory cytokine production and delirium progression and the role of antipsychotics. Materials and Methods: Adult critically ill patients with confirmed delirium according to a positive CAM-ICU score were included and IL-6 and IL-8 levels were trended for 24 h in this single-center, prospective, observational cohort study. Results: A total of 23 patients were consented and had blood samples drawn for inclusion. There was no difference in IL-6 and IL-8 levels at baseline, 4 to 8 h, and 22 to 28 h after enrollment when comparing patients based on antipsychotic exposure. We identified 2 patient clusters based on age, APACHE III, need for mechanical ventilation, and concomitant infection. In cluster 1, 5 (33.3%) patients received antipsychotics versus 5 (62.5%) patients in cluster 2 (P = .18). Patients in cluster 1 had more co-inflammatory conditions (P < .0001), yet numerically lower baseline IL-6 (P = .18) and IL-8 levels (P = .80) compared to cluster 2. Patients in cluster 1 had a greater median number of delirium-free days compared to cluster 2 (17.0 vs 6.0 days; P = .05). Conclusions: In critically ill patients with delirium, IL-6 and IL-8 levels were variable and antipsychotics were not associated with improvements in delirium or inflammatory markers.


Assuntos
Antipsicóticos , Delírio , Adulto , Humanos , Antipsicóticos/uso terapêutico , Estudos Prospectivos , Interleucina-8 , Estado Terminal/terapia , Interleucina-6/uso terapêutico , Delírio/tratamento farmacológico , Unidades de Terapia Intensiva
3.
Front Immunol ; 13: 1079962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36865524

RESUMO

Alcohol abuse, reported by 1/8th critically ill patients, is an independent risk factor for death in sepsis. Sepsis kills over 270,000 patients/year in the US. We reported that the ethanol-exposure suppresses innate-immune response, pathogen clearance, and decreases survival in sepsis-mice via sirtuin 2 (SIRT2). SIRT2 is an NAD+-dependent histone-deacetylase with anti-inflammatory properties. We hypothesized that in ethanol-exposed macrophages, SIRT2 suppresses phagocytosis and pathogen clearance by regulating glycolysis. Immune cells use glycolysis to fuel increased metabolic and energy demand of phagocytosis. Using ethanol-exposed mouse bone marrow- and human blood monocyte-derived macrophages, we found that SIRT2 mutes glycolysis via deacetylating key glycolysis regulating enzyme phosphofructokinase-platelet isoform (PFKP), at mouse lysine 394 (mK394, human: hK395). Acetylation of PFKP at mK394 (hK395) is crucial for PFKP function as a glycolysis regulating enzyme. The PFKP also facilitates phosphorylation and activation of autophagy related protein 4B (Atg4B). Atg4B activates microtubule associated protein 1 light chain-3B (LC3). LC3 is a driver of a subset of phagocytosis, the LC3-associated phagocytosis (LAP), which is crucial for segregation and enhanced clearance of pathogens, in sepsis. We found that in ethanol-exposed cells, the SIRT2-PFKP interaction leads to decreased Atg4B-phosphorylation, decreased LC3 activation, repressed phagocytosis and LAP. Genetic deficiency or pharmacological inhibition of SIRT2 reverse PFKP-deacetylation, suppressed LC3-activation and phagocytosis including LAP, in ethanol-exposed macrophages to improve bacterial clearance and survival in ethanol with sepsis mice.


Assuntos
Etanol , Macrófagos , Fagocitose , Fosfofrutoquinase-1 Tipo C , Sirtuína 2 , Animais , Humanos , Camundongos , Etanol/efeitos adversos , Macrófagos/efeitos dos fármacos , Sirtuína 2/metabolismo , Fosfofrutoquinase-1 Tipo C/metabolismo
4.
J Immunol ; 204(5): 1310-1321, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969384

RESUMO

Mechanical cell-matrix interactions can drive the innate immune responses to infection; however, the molecular underpinnings of these responses remain elusive. This study was undertaken to understand the molecular mechanism by which the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), alters the in vivo response to lung infection. For the first time, to our knowledge, we show that TRPV4 protects the lung from injury upon intratracheal Pseudomonas aeruginosa in mice. TRPV4 functions to enhance macrophage bacterial clearance and downregulate proinflammatory cytokine secretion. TRPV4 mediates these effects through a novel mechanism of molecular switching of LPS signaling from predominant activation of the MAPK, JNK, to that of p38. This is accomplished through the activation of the master regulator of inflammation, dual-specificity phosphatase 1. Further, TRPV4's modulation of the LPS signal is mechanosensitive in that both upstream activation of p38 and its downstream biological consequences depend on pathophysiological range extracellular matrix stiffness. We further show the importance of TRPV4 on LPS-induced activation of macrophages from healthy human controls. These data are the first, to our knowledge, to demonstrate new roles for macrophage TRPV4 in regulating innate immunity in a mechanosensitive manner through the modulation of dual-specificity phosphatase 1 expression to mediate MAPK activation switching.


Assuntos
Pulmão , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos , Macrófagos/imunologia , Pneumonia Bacteriana , Infecções por Pseudomonas , Pseudomonas aeruginosa/imunologia , Canais de Cátion TRPV/imunologia , Animais , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/patologia , Camundongos , Camundongos Mutantes , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Canais de Cátion TRPV/genética
5.
Sci Signal ; 12(607)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719171

RESUMO

Myofibroblasts are key contributors to pathological fibrotic conditions of several major organs. The transdifferentiation of fibroblasts into myofibroblasts requires both a mechanical signal and transforming growth factor-ß (TGF-ß) signaling. The cation channel transient receptor potential vanilloid 4 (TRPV4) is a critical mediator of myofibroblast transdifferentiation and in vivo fibrosis through its mechanosensitivity to extracellular matrix stiffness. Here, we showed that TRPV4 promoted the transdifferentiation of human and mouse lung fibroblasts through its interaction with phosphoinositide 3-kinase γ (PI3Kγ), forming nanomolar-affinity, intracellular TRPV4-PI3Kγ complexes. TGF-ß induced the recruitment of TRPV4-PI3Kγ complexes to the plasma membrane and increased the activities of both TRPV4 and PI3Kγ. Using gain- and loss-of-function approaches, we showed that both TRPV4 and PI3Kγ were required for myofibroblast transdifferentiation as assessed by the increased production of α-smooth muscle actin and its incorporation into stress fibers, cytoskeletal changes, collagen-1 production, and contractile force. Expression of various mutant forms of the PI3Kγ catalytic subunit (p110γ) in cells lacking PI3Kγ revealed that only the noncatalytic, amino-terminal domain of p110γ was necessary and sufficient for TGF-ß-induced TRPV4 plasma membrane recruitment and myofibroblast transdifferentiation. These data suggest that TGF-ß stimulates a noncanonical scaffolding action of PI3Kγ, which recruits TRPV4-PI3Kγ complexes to the plasma membrane, thereby increasing myofibroblast transdifferentiation. Given that both TRPV4 and PI3Kγ have pleiotropic actions, targeting the interaction between them could provide a specific therapeutic approach for inhibiting myofibroblast transdifferentiation.


Assuntos
Membrana Celular/metabolismo , Transdiferenciação Celular , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Miofibroblastos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Membrana Celular/patologia , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Miofibroblastos/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Canais de Cátion TRPV/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
6.
J Immunol ; 196(1): 428-36, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26597012

RESUMO

Macrophage phagocytosis of particles and pathogens is an essential aspect of innate host defense. Phagocytic function requires cytoskeletal rearrangements that depend on the interaction between macrophage surface receptors, particulates/pathogens, and the extracellular matrix. In the present study we determine the role of a mechanosensitive ion channel, transient receptor potential vanilloid 4 (TRPV4), in integrating the LPS and matrix stiffness signals to control macrophage phenotypic change for host defense and resolution from lung injury. We demonstrate that active TRPV4 mediates LPS-stimulated murine macrophage phagocytosis of nonopsonized particles (Escherichia coli) in vitro and opsonized particles (IgG-coated latex beads) in vitro and in vivo in intact mice. Intriguingly, matrix stiffness in the range seen in inflamed or fibrotic lung is required to sensitize the TRPV4 channel to mediate the LPS-induced increment in macrophage phagocytosis. Furthermore, TRPV4 is required for the LPS induction of anti-inflammatory/proresolution cytokines. These findings suggest that signaling through TRPV4, triggered by changes in extracellular matrix stiffness, cooperates with LPS-induced signals to mediate macrophage phagocytic function and lung injury resolution. These mechanisms are likely to be important in regulating macrophage function in the context of pulmonary infection and fibrosis.


Assuntos
Lipopolissacarídeos/imunologia , Lesão Pulmonar/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Canais de Cátion TRPV/imunologia , Animais , Células Cultivadas , Citocinas/biossíntese , Citocinas/imunologia , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Matriz Extracelular/metabolismo , Imunoglobulina G/imunologia , Lesão Pulmonar/patologia , Fenômenos Mecânicos , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Fibrose Pulmonar/imunologia , Transdução de Sinais/imunologia
7.
J Clin Invest ; 124(12): 5225-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25365224

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disorder with no effective medical treatments available. The generation of myofibroblasts, which are critical for fibrogenesis, requires both a mechanical signal and activated TGF-ß; however, it is not clear how fibroblasts sense and transmit the mechanical signal(s) that promote differentiation into myofibroblasts. As transient receptor potential vanilloid 4 (TRPV4) channels are activated in response to changes in plasma membrane stretch/matrix stiffness, we investigated whether TRPV4 contributes to generation of myofibroblasts and/or experimental lung fibrosis. We determined that TRPV4 activity is upregulated in lung fibroblasts derived from patients with IPF. Moreover, TRPV4-deficient mice were protected from fibrosis. Furthermore, genetic ablation or pharmacological inhibition of TRPV4 function abrogated myofibroblast differentiation, which was restored by TRPV4 reintroduction. TRPV4 channel activity was elevated when cells were plated on matrices of increasing stiffness or on fibrotic lung tissue, and matrix stiffness-dependent myofibroblast differentiation was reduced in response to TRVP4 inhibition. TRPV4 activity modulated TGF-ß1-dependent actions in a SMAD-independent manner, enhanced actomyosin remodeling, and increased nuclear translocation of the α-SMA transcription coactivator (MRTF-A). Together, these data indicate that TRPV4 activity mediates pulmonary fibrogenesis and suggest that manipulation of TRPV4 channel activity has potential as a therapeutic approach for fibrotic diseases.


Assuntos
Diferenciação Celular , Pulmão/metabolismo , Miofibroblastos/metabolismo , Fibrose Pulmonar/metabolismo , Canais de Cátion TRPV/biossíntese , Regulação para Cima , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacologia , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Pulmão/patologia , Camundongos , Camundongos Mutantes , Miofibroblastos/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Canais de Cátion TRPV/genética , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
8.
Am J Respir Crit Care Med ; 190(5): 560-71, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25073001

RESUMO

RATIONALE: Effective therapeutic interventions for chronic, idiopathic lung diseases remain elusive. Normalized T-cell function is an important contributor to spontaneous resolution of pulmonary sarcoidosis. Up-regulation of inhibitor receptors, such as programmed death-1 (PD-1) and its ligand, PD-L1, are important inhibitors of T-cell function. OBJECTIVES: To determine the effects of PD-1 pathway blockade on sarcoidosis CD4(+) T-cell proliferative capacity. METHODS: Gene expression profiles of sarcoidosis and healthy control peripheral blood mononuclear cells were analyzed at baseline and follow-up. Flow cytometry was used to measure ex vivo expression of PD-1 and PD-L1 on systemic and bronchoalveolar lavage-derived cells of subjects with sarcoidosis and control subjects, as well as the effects of PD-1 pathway blockade on cellular proliferation after T-cell receptor stimulation. Immunohistochemistry analysis for PD-1/PD-L1 expression was conducted on sarcoidosis, malignant, and healthy control lung specimens. MEASUREMENTS AND MAIN RESULTS: Microarray analysis demonstrates longitudinal increase in PDCD1 gene expression in sarcoidosis peripheral blood mononuclear cells. Immunohistochemistry analysis revealed increased PD-L1 expression within sarcoidosis granulomas and lung malignancy, but this was absent in healthy lungs. Increased numbers of sarcoidosis PD-1(+) CD4(+) T cells are present systemically, compared with healthy control subjects (P < 0.0001). Lymphocytes with reduced proliferative capacity exhibited increased proliferation with PD-1 pathway blockade. Longitudinal analysis of subjects with sarcoidosis revealed reduced PD-1(+) CD4(+) T cells with spontaneous clinical resolution but not with disease progression. CONCLUSIONS: Analogous to the effects in other chronic lung diseases, these findings demonstrate that the PD-1 pathway is an important contributor to sarcoidosis CD4(+) T-cell proliferative capacity and clinical outcome. Blockade of the PD-1 pathway may be a viable therapeutic target to optimize clinical outcomes.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Receptor de Morte Celular Programada 1/metabolismo , Sarcoidose Pulmonar/imunologia , Adulto , Idoso , Anticorpos , Antígeno B7-H1/imunologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/imunologia , Remissão Espontânea , Sarcoidose Pulmonar/metabolismo , Regulação para Cima
9.
J Clin Immunol ; 33(2): 446-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23073617

RESUMO

RATIONALE: Sarcoidosis is a granulomatous disease of unknown etiology. Many patients with sarcoidosis demonstrate antigen-specific immunity to mycobacterial virulence factors. Th-17 cells are crucial to the immune response in granulomatous inflammation, and have recently been shown to be present in greater numbers in the peripheral blood and bronchoalveolar lavage (BAL) fluid (BALF) of sarcoidosis patients than healthy controls. It is unclear whether Th-17 cells in sarcoidosis are specific for mycobacterial antigens, or whether they have similar functionality to control Th-17 cells. METHODS: Flow cytometry was used to determine the numbers of Th-17 cells present in the peripheral blood and BALF of patients with sarcoidosis, the percentage of Th-17 cells that were specific to the mycobacterial virulence factor ESAT-6, and as well as to assess IFN-γ expression in Th-17 cells following polyclonal stimulation. RESULTS: Patients with sarcoidosis had greater numbers of Th-17 cells in the peripheral blood and BALF than controls and produced significantly more extracellular IL-17A (p = 0.03 and p = 0.02, respectively). ESAT-6 specific Th-17 cells were present in both peripheral blood and BALF of sarcoidosis patients (p < 0.001 and p = 0.03, respectively). After polyclonal stimulation, Th-17 cells from sarcoidosis patients produced less IFN-γ than healthy controls. CONCLUSIONS: Patients with sarcoidosis have mycobacterial antigen-specific Th-17 cells peripherally and in sites of active sarcoidosis involvement. Despite the Th1 immunophenotype of sarcoidosis immunology, the Th-17 cells have reduced IFN-γ expression, compared to healthy controls. This reduction in immunity may contribute to sarcoidosis pathogenesis.


Assuntos
Antígenos de Bactérias/imunologia , Interferon gama/biossíntese , Sarcoidose/imunologia , Sarcoidose/metabolismo , Células Th17/imunologia , Adulto , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Imunofenotipagem , Interleucina-17/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Células Th1/imunologia , Células Th17/metabolismo
10.
J Innate Immun ; 4(5-6): 569-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22759465

RESUMO

BACKGROUND: Dysfunctional immune responses characterize sarcoidosis, but the status of cathelicidin, a potent immunoregulatory and antimicrobial molecule, has not been established in clinical disease activity. METHODS: Alveolar macrophage cathelicidin expression was determined in biopsy-proven sarcoidosis patients classified clinically as 'severe' (requiring systemic treatment) or 'non-severe' (never requiring treatment). Bronchoalveolar lavage (BAL) cells from sarcoidosis patients and healthy controls were analyzed for mRNA expression of cathelicidin, vitamin D receptor (VDR) and the VDR coactivator steroid receptor coactivator-3 (SRC3) by quantitative PCR. Cathelicidin-derived peptide LL-37 was determined by immunocytochemistry. Serum calcidiol (25-hydroxyvitamin D2; vitD2) and calcitriol (1,25-dihydroxyvitamin D3; vitD3) were quantified. RESULTS: The results indicated reduced BAL cell expression of cathelicidin and SRC3 in severe but not non-severe sarcoidosis compared to controls. Serum levels of biologically active vitD3 in both severe and non-severe patients were within the control range even though vitD2 levels in both groups were below the recommended level (30 ng/ml). Sarcoidosis and control alveolar macrophages were studied in vitro to determine cathelicidin responses to vitD3 and tumor necrosis factor-α (TNFα), a vitD3 antagonist elevated in active sarcoidosis. Alveolar macrophage cathelicidin was stimulated by vitD3 but repressed by TNFα, which also repressed SRC3. CONCLUSIONS: These findings suggest that TNFα-mediated repression of SRC3 contributes to alveolar macrophage cathelicidin deficiency in severe sarcoidosis despite healthy vitD3 levels. Deficiency of cathelicidin, a multifunctional regulator of immune cells and proinflammatory cytokines, may impede resolution of inflammation in the lungs of patients with severe sarcoidosis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/deficiência , Macrófagos Alveolares/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Sarcoidose Pulmonar/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Vitamina D/análogos & derivados , Adulto , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Coativador 3 de Receptor Nuclear/genética , Sarcoidose Pulmonar/metabolismo , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Vitamina D/metabolismo , Adulto Jovem , Catelicidinas
11.
J Clin Immunol ; 32(5): 1129-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22552860

RESUMO

PURPOSE: Sarcoidosis is a non-caseating granulomatous disease for which a role for infectious antigens continues to strengthen. Recent studies have reported molecular evidence of mycobacteria or propionibacteria. We assessed for immune responses against mycobacterial and propionibacterial antigens in sarcoidosis bronchoalveolar lavage (BAL) using flow cytometry, and localized signals consistent with microbial antigens with sarcoidosis specimens, using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS). METHODS: BAL cells from 27 sarcoidosis, 14 PPD- controls, and 9 subjects with nontuberculosis mycobacterial (NTM) infections were analyzed for production of IFN-γ after stimulation with mycobacterial ESAT-6 and Propionibacterium acnes proteins. To complement the immunological data, MALDI-IMS was performed to localize ESAT-6 and Propionibacterium acnes signals within sarcoidosis and control specimens. RESULTS: CD4+ immunologic analysis for mycobacteria was positive in 17/27 sarcoidosis subjects, compared to 2/14 PPD- subjects, and 5/9 NTM subjects (p = 0.008 and p = 0.71 respectively, Fisher's exact test). There was no significant difference for recognition of P. acnes, which occurred only in sarcoidosis subjects that also recognized ESAT-6. Similar results were also observed for the CD8+ immunologic analysis. MALDI-IMS localized signals consistent with ESAT-6 only within sites of granulomatous inflammation, whereas P. acnes signals were distributed throughout the specimen. CONCLUSIONS: MALDI-IMS localizes signals consistent with ESAT-6 to sarcoidosis granulomas, whereas no specific localization of P. acnes signals is detected. Immune responses against both mycobacterial and P. acnes are present within sarcoidosis BAL, but only mycobacterial signals are distinct from disease controls. These immunologic and molecular investigations support further investigation of the microbial community within sarcoidosis granulomas.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Mycobacterium/imunologia , Propionibacterium acnes/imunologia , Sarcoidose/imunologia , Adulto , Idoso , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T CD4-Positivos/imunologia , Enterotoxinas/farmacologia , Feminino , Humanos , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium/imunologia , Peptídeos/imunologia , Sarcoidose/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
12.
Respir Res ; 11: 161, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21092305

RESUMO

INTRODUCTION: Sarcoidosis is a multisystem granulomatous disease for which the association with mycobacteria continues to strengthen. It is hypothesized that a single, poorly degradable antigen is responsible for sarcoidosis pathogenesis. Several reports from independent groups support mycobacterial antigens having a role in sarcoidosis pathogenesis. To identify other microbial targets of the adaptive immune response, we tested the ability of CD4+ and CD8+ T cells to recognize multiple mycobacterial antigens. METHODS: Fifty-four subjects were enrolled in this study: 31 sarcoidosis patients, nine non-tuberculosis mycobacterial (NTM) infection controls, and 14 PPD- controls. Using flow cytometry, we assessed for Th1 immune responses to ESAT-6, katG, Ag85A, sodA, and HSP. RESULTS: Alveolar T-cells from twenty-two of the 31 sarcoidosis patients produced a CD4+ response to at least one of ESAT-6, katG, Ag85A, sodA, or HSP, compared to two of 14 PPD- controls (p = 0.0008) and five of nine NTM controls (p = 0.44), while eighteen of the 31 sarcoidosis subjects tested produced a CD8+ response to at least one of the mycobacterial antigens compared to two of 14 PPD- controls (p = 0.009) and three of nine NTM controls (0.26). Not only did the BAL-derived T cells respond to multiple virulence factors, but also to multiple, distinct epitopes within a given protein. The detection of proliferation upon stimulation with the mycobacterial virulence factors demonstrates that these responses are initiated by antigen specific recognition. CONCLUSIONS: Together these results reveal that antigen-specific CD4+ and CD8+ T cells responses to multiple mycobacterial epitopes are present within sites of active sarcoidosis involvement, and that these antigen-specific responses are present at the time of diagnosis.


Assuntos
Imunidade Adaptativa/imunologia , Antígenos de Bactérias/imunologia , Mycobacterium/imunologia , Sarcoidose Pulmonar/imunologia , Células Th1/imunologia , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Infect Immun ; 77(9): 3740-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19596780

RESUMO

Considerable evidence supports the concept that CD4(+) T cells are important in sarcoidosis pathogenesis, but the antigens responsible for the observed Th1 immunophenotype remain elusive. The epidemiologic association with bioaerosols and the presence of granulomatous inflammation support consideration of mycobacterial antigens. To explore the role of mycobacterial antigens in sarcoidosis immunopathogenesis, we assessed the immune recognition of mycobacterial antigens, the 6-kDa early secreted antigenic protein (ESAT-6) and catalase-peroxidase (KatG), by T cells derived from bronchoalveolar lavage (BAL) fluid obtained during diagnostic bronchoscopy. We report the presence of antigen-specific recognition of ESAT-6 and KatG in T cells from BAL fluid of 32/44 sarcoidosis subjects, compared to 1/27 controls (P < 0.0001). CD4(+) T cells were primarily responsible for immune recognition (32/44 sarcoidosis subjects), although CD8(+) T-cell responses were observed (25/41 sarcoidosis subjects). Recognition was significantly absent from BAL fluid cells of patients with other lung diseases, including infectious granulomatous diseases. Blocking of Toll-like receptor 2 reduced the strength of the observed immune response. The presence of immune responses to mycobacterial antigens in cells from BAL fluid used for sarcoidosis diagnosis suggests a strong association between mycobacteria and sarcoidosis pathogenesis. Inhibition of immune recognition with monoclonal antibody against Toll-like receptor 2 suggests that induction of innate immunity by mycobacteria contributes to the polarized Th1 immune response.


Assuntos
Antígenos de Bactérias/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Mycobacterium/imunologia , Sarcoidose/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Feminino , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Sarcoidose/imunologia , Células Th1/imunologia , Receptor 2 Toll-Like/fisiologia
14.
Am J Respir Crit Care Med ; 179(10): 929-38, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19218196

RESUMO

RATIONALE: Little is known about the genetic regulation of granulomatous inflammation in sarcoidosis. OBJECTIVES: To determine if tissue gene array analysis would identify novel genes engaged in inflammation and lung remodeling in patients with sarcoidosis. METHODS: Gene expression analysis was performed on tissues obtained from patients with sarcoidosis at the time of diagnosis (untreated) (n = 6) compared with normal lung tissue (n = 6). Expression of select genes was further confirmed in lung tissue from a second series of patients with sarcoidosis and disease-free control subjects (n = 11 per group) by semi-quantitative RT-PCR. Interactive gene networks were identified in patients with sarcoidosis using Ingenuity Pathway Analysis (Ingenuity Systems, Inc., Redwood, CA) software. The expression of proteins corresponding to selected overexpressed genes was determined using fluorokine multiplex analysis, and immunohistochemistry. Selected genes and proteins were then analyzed in bronchoalveolar lavage fluid in an independent series of patients with sarcoidosis (n = 36) and control subjects (n = 12). MEASUREMENTS AND MAIN RESULTS: A gene network engaged in Th1-type responses was most significantly overexpressed in the sarcoidosis lung tissues, including genes not previously reported in the context of sarcoidosis (e.g., IL-7). MMP-12 and ADAMDEC1 transcripts were most highly expressed (> 25-fold) in sarcoidosis lung tissues, corresponding with increased protein expression by immunohistochemistry. MMP-12 and ADAMDEC1 gene and protein expression were increased in bronchoalveolar lavage samples from patients with sarcoidosis, correlating with disease severity. CONCLUSIONS: Tissue gene expression analyses provide novel insights into the pathogenesis of pulmonary sarcoidosis. MMP-12 and ADAMDEC1 emerge as likely mediators of lung damage and/or remodeling and may serve as markers of disease activity.


Assuntos
Metaloproteinase 12 da Matriz/genética , Metaloendopeptidases/genética , Sarcoidose Pulmonar/genética , Proteínas ADAM , Adulto , Fatores Etários , Líquido da Lavagem Broncoalveolar/química , Estudos de Casos e Controles , Citocinas/biossíntese , Citocinas/genética , Citocinas/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Granuloma/enzimologia , Granuloma/genética , Humanos , Masculino , Metaloproteinase 12 da Matriz/biossíntese , Metaloendopeptidases/biossíntese , Análise em Microsséries , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoidose Pulmonar/enzimologia , Sarcoidose Pulmonar/imunologia , Sarcoidose Pulmonar/patologia , Fatores Sexuais , Células Th1/imunologia
15.
Sarcoidosis Vasc Diffuse Lung Dis ; 23(2): 93-100, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17937104

RESUMO

BACKGROUND AND AIM: Recent evidence suggests that the transcription factor, PPARgamma, is an important negative regulator of inflammation. Because studies of murine adipocytes and macrophages implicate IFN-gamma, a key mediator of granuloma formation in sarcoidosis, as a PPARgamma antagonist, we investigated the relationship between PPARgamma and IFN-gamma in bronchoalveolar lavage (BAL) cells of sarcoidosis patients and healthy controls. METHODS: BAL cells were analyzed for PPARgamma and IFN-gamma mRNA expression by quantitative PCR and for PPARgamma protein by immunocytochemistry and western blotting. RESULTS: In sarcoidosis patients with severe, treatment-requiring disease, IFN-gamma was strikingly elevated and PPARgamma gene expression was deficient. In contrast, PPARgamma expression of non-severe patients was comparable to control but was still accompanied by increased IFN-gamma. By confocal microscopy, nuclear PPARgamma protein was detectable in alveolar macrophages from non-severe patients unlike previous observations of severe patients. In vitro exposure of BAL cells or purified alveolar macrophages to IFN-gamma resulted in dose-dependent repression of PPARgamma mRNA in both sarcoidosis and controls. IFN-gamma treatment also reduced PPARgamma protein in BAL lysates and nuclear PPARgamma content in control alveolar macrophages, resulting in a diffuse cytoplasmic PPARgamma distribution similar to that observed in severe sarcoidosis. CONCLUSION: These novel results indicate that IFN-gamma represses PPARgamma in human alveolar macrophages but that in sarcoidosis, PPARgamma rather than IFN-gamma levels correlate best with disease severity. Data also emphasize the complex nature of PPARgamma restorative mechanisms in alveolar macrophages exposed to an inflammatory environment containing IFN-gamma -- a potential PPARgamma antagonist.


Assuntos
Expressão Gênica , Interferon gama/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/genética , Sarcoidose Pulmonar/metabolismo , Biomarcadores/metabolismo , Western Blotting , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Interferon gama/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , PPAR gama/genética , Reação em Cadeia da Polimerase , Prognóstico , Sarcoidose Pulmonar/genética , Sarcoidose Pulmonar/patologia , Índice de Gravidade de Doença
16.
Autoimmunity ; 36(5): 285-90, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14567558

RESUMO

Pulmonary alceolar proteinosis (PAP) is an autoimmune lung disease characterized by accumulation of surfactant material within the lung. Autoantibodies to GM-CSF as well as high levels of IL-10 are also found in the lungs in PAP. Previous studies suggest that treatment with recombinant GM-CSF is beneficial for patients with low levels of GM-CSF antibodies. The role of IL-10 in PAP, however, is unknown and the hypothesis that IL-10 may affect PAP GM-CSF synthesis has not been addressed. The current findings show that GM-CSF secretion is significantly compromised in PAP bronchoalveolar lavage (BAL) cells compared to controls, but surprisingly, GM-CSF mRNA levels are elevated. In contrast, IL-10 protein and mRNA levels are both highly elevated in PAP. In vitro analysis of GM-CSF regulation indicates that both secretion and mRNA levels are sharply reduced by IL-10 and increased by anti-IL-10 antibody. The phenomenon of elevated GM-CSF mRNA in BAL cells appears not to be due to lack of negative feedback by GM-CSF protein. Results suggest that in PAP, GM-CSF synthesis is deficient and associated with negative regulation by IL-10. Furthermore, IL-10 gene expression becomes even more elevated in patients who do not respond to recombinant GM-CSF therapy and have high anti-GM-CSF titers. Based on these observations, we hypothesize that IL-10 may be an indicator of PAP clinical response to GM-CSF therapy.


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Interleucina-10/fisiologia , Macrófagos Alveolares/imunologia , Proteinose Alveolar Pulmonar/tratamento farmacológico , Proteinose Alveolar Pulmonar/imunologia , Adulto , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , Proteinose Alveolar Pulmonar/genética , RNA Mensageiro/análise , RNA Mensageiro/isolamento & purificação , Proteínas Recombinantes
17.
Am J Physiol Lung Cell Mol Physiol ; 285(5): L1132-6, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12896880

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is critically implicated in lung homeostasis in the GM-CSF knockout mouse model. These animals develop an isolated lung lesion reminiscent of pulmonary alveolar proteinosis (PAP) seen in humans. The development of the adult form of human alveolar proteinosis is not due to the absence of a GM-CSF gene or receptor defect but to the development of an anti-GM-CSF autoimmunity. The role of GM-CSF in the development of PAP is unknown. Studies in the GM-CSF knockout mouse have shown that lack of PU.1 protein expression in alveolar macrophages is correlated with decreased maturation, differentiation, and surfactant catabolism. This study investigates PU.1 expression in vitro and in vivo in human PAP alveolar macrophages as well as the regulation of PU.1 by GM-CSF. We show for the first time that PU.1 mRNA expression in PAP bronchoalveolar lavage cells is deficient compared with healthy controls. PU.1-dependent terminal differentiation markers CD32 (FCgammaII), mannose receptor, and macrophage colony-stimulating factor receptor (M-CSFR) are decreased in PAP alveolar macrophages. In vitro studies demonstrate that exogenous GMCSF treatment upregulated PU.1 and M-CSFR gene expression in PAP alveolar macrophages. Finally, in vivo studies showed that PAP patients treated with GM-CSF therapy have higher levels of PU.1 and M-CSFR expression in alveolar macrophages compared with healthy control and PAP patients before GM-CSF therapy. These observations suggest that PU.1 is critical in the terminal differentiation of human alveolar macrophages.


Assuntos
Diferenciação Celular/fisiologia , Macrófagos Alveolares/citologia , Proteínas Proto-Oncogênicas/fisiologia , Proteinose Alveolar Pulmonar/genética , Alvéolos Pulmonares/fisiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Transativadores/fisiologia , Transcrição Gênica , Líquido da Lavagem Broncoalveolar/citologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/deficiência , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Proteínas Proto-Oncogênicas/genética , Proteinose Alveolar Pulmonar/tratamento farmacológico , RNA Mensageiro/genética , Proteínas Recombinantes , Valores de Referência , Transativadores/genética
18.
Am J Respir Cell Mol Biol ; 29(6): 677-82, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12805087

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a ligand-activated, nuclear transcription factor that regulates genes involved in lipid and glucose metabolism, inflammation, and other pathways. The hematopoietic growth factor, granulocyte macrophage colony-stimulating factor (GM-CSF), is essential for lung homeostasis and is thought to regulate surfactant clearance, but mechanisms involved are unknown. GM-CSF is reported to stimulate PPAR-gamma, but the activation status of PPAR-gamma in human alveolar macrophages has not been defined. In pulmonary alveolar proteinosis (PAP), a rare interstitial lung disease, surfactant accumulates in alveolar airspaces, resident macrophages become engorged with lipoproteinaceous material, and GM-CSF deficiency is strongly implicated in pathogenesis. Here we show that PPAR-gamma mRNA and protein are highly expressed in alveolar macrophages of healthy control subjects but severely deficient in PAP in a cell-specific manner. Further, we show that the PPAR-gamma-regulated lipid scavenger receptor, CD36, is also deficient in PAP. PPAR-gamma and CD36 deficiency are not intrinsic to PAP alveolar macrophages, but can be upregulated by GM-CSF therapy. Moreover, GM-CSF treatment of patients with PAP fully restores PPAR-gamma to healthy control levels. Based upon these novel findings, we hypothesize that GM-CSF regulates lung homeostasis via PPAR-gamma-dependent pathways.


Assuntos
Macrófagos Alveolares/metabolismo , Proteinose Alveolar Pulmonar/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Macrófagos Alveolares/citologia , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Fatores de Transcrição/genética
19.
J Biol Chem ; 277(36): 33344-8, 2002 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-12082102

RESUMO

Primary pulmonary hypertension (PPH) is characterized by increased pulmonary arterial pressure and vascular resistance. We and others have observed that inflammatory cytokines and infiltrates are present in the lung tissue, but the significance is uncertain. Treprostinil (TRE), a prostacyclin analogue with extended half-life and chemical stability, has shown promise in the treatment of PPH. We hypothesize that TRE might exert beneficial effects in PPH by antagonizing inflammatory cytokine production in the lung. Here we show that TRE dose-dependently inhibits inflammatory cytokine (tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and granulocyte macrophage colony-stimulating factor) secretion and gene expression by human alveolar macrophages. TRE blocks NFkappaB activation, but IkappaB-alpha phosphorylation and degradation are unaffected. Moreover, TRE does not affect the formation of the NFkappaB.DNA complex but blocks nuclear translocation of p65. These results are the first to illustrate the anti-cytokine actions of TRE in down-regulating NFkappaB, not through its inhibitory component or by direct binding but by blocking nuclear translocation. These data indicate that inflammatory mechanisms may be important in the pathogenesis of PPH and cytokine antagonism by blocking NFkappaB may contribute to the efficacy of TRE therapy in PPH.


Assuntos
Epoprostenol/metabolismo , Epoprostenol/farmacologia , Pulmão/citologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Transporte Ativo do Núcleo Celular , Adolescente , Adulto , Anti-Hipertensivos/farmacologia , Adesão Celular , Núcleo Celular/metabolismo , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Epoprostenol/análogos & derivados , Humanos , Inflamação , Interleucina-6/metabolismo , Interleucinas/metabolismo , Pessoa de Meia-Idade , Ligação Proteica , Transporte Proteico , Fatores de Tempo , Fator de Transcrição RelA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA