Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 13(7): e7163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597129

RESUMO

BACKGROUND: Ovarian cancer is the most lethal of all gynecological cancers. Cancer Antigen 125 (CA125) is the best-performing ovarian cancer biomarker which however is still not effective as a screening test in the general population. Recent literature reports additional biomarkers with the potential to improve on CA125 for early detection when using longitudinal multimarker models. METHODS: Our data comprised 180 controls and 44 cases with serum samples sourced from the multimodal arm of UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Our models were based on Bayesian change-point detection and recurrent neural networks. RESULTS: We obtained a significantly higher performance for CA125-HE4 model using both methodologies (AUC 0.971, sensitivity 96.7% and AUC 0.987, sensitivity 96.7%) with respect to CA125 (AUC 0.949, sensitivity 90.8% and AUC 0.953, sensitivity 92.1%) for Bayesian change-point model (BCP) and recurrent neural networks (RNN) approaches, respectively. One year before diagnosis, the CA125-HE4 model also ranked as the best, whereas at 2 years before diagnosis no multimarker model outperformed CA125. CONCLUSIONS: Our study identified and tested different combination of biomarkers using longitudinal multivariable models that outperformed CA125 alone. We showed the potential of multivariable models and candidate biomarkers to increase the detection rate of ovarian cancer.


Assuntos
Aprendizado Profundo , Neoplasias Ovarianas , Humanos , Feminino , Teorema de Bayes , Estudos de Casos e Controles , Neoplasias Ovarianas/epidemiologia , Biomarcadores Tumorais , Detecção Precoce de Câncer/métodos , Curva ROC
2.
Eur Urol Open Sci ; 52: 36-39, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37182116

RESUMO

The global uptake of prostate cancer (PCa) active surveillance (AS) is steadily increasing. While prostate-specific antigen density (PSAD) is an important baseline predictor of PCa progression on AS, there is a scarcity of recommendations on its use in follow-up. In particular, the best way of measuring PSAD is unclear. One approach would be to use the baseline gland volume (BGV) as a denominator in all calculations throughout AS (nonadaptive PSAD, PSADNA), while another would be to remeasure gland volume at each new magnetic resonance imaging scan (adaptive PSAD, PSADA). In addition, little is known about the predictive value of serial PSAD in comparison to PSA. We applied a long short-term memory recurrent neural network to an AS cohort of 332 patients and found that serial PSADNA significantly outperformed both PSADA and PSA for follow-up prediction of PCa progression because of its high sensitivity. Importantly, while PSADNA was superior in patients with smaller glands (BGV ≤55 ml), serial PSA was better in men with larger prostates of >55 ml. Patient summary: Repeat measurements of prostate-specific antigen (PSA) and PSA density (PSAD) are the mainstay of active surveillance in prostate cancer. Our study suggests that in patients with a prostate gland of 55 ml or smaller, PSAD measurements are a better predictor of tumour progression, whereas men with a larger gland may benefit more from PSA monitoring.

3.
Eur Radiol ; 33(6): 3792-3800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36749370

RESUMO

Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78-0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64-0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76-0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation. KEY POINTS: •LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density. •Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework. •The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Conduta Expectante , Fatores de Tempo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA