Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 24(12): 2487-2500, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36136088

RESUMO

PURPOSE: The chaperone protein BiP is the master regulator of the unfolded protein response in the endoplasmic reticulum. BiP chaperone activity is regulated by the post-translational modification AMPylation, exclusively provided by FICD. We investigated whether FICD variants identified in patients with motor neuron disease could interfere with BiP activity regulation. METHODS: Exome sequencing was performed to identify causative pathogenic variants associated with motor neuron diseases. Functional studies were conducted on fibroblasts from patients to explore the molecular mechanism of the disease. RESULTS: We identified biallelic variants in FICD causing a neurodegenerative disease of upper and lower motor neurons. Affected individuals harbor a specific missense variant, Arg374His, positioned in the catalytic motif of the enzyme and important for adenosine triphosphate binding. The mutated residue abolishes intramolecular interaction with the regulatory residue Glu234, essential to inhibit AMPylation and to promote de-AMPylation by FICD. Consequently, fibroblasts from patients with FICD variants have abnormally increased levels of AMPylated and thus inactivated BiP. CONCLUSION: Loss of BiP chaperone activity in patients likely results in a chronic impairment of the protein quality control system in the endoplasmic reticulum. These findings will guide the development of therapeutic strategies for motoneuron and related diseases linked to proteotoxic stress.


Assuntos
Doença dos Neurônios Motores , Doenças Neurodegenerativas , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperona BiP do Retículo Endoplasmático , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo
2.
Neurology ; 95(24): e3163-e3179, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33144514

RESUMO

OBJECTIVE: To test the hypothesis that monogenic neuropathies such as Charcot-Marie-Tooth disease (CMT) contribute to frequent but often unexplained neuropathies in the elderly, we performed genetic analysis of 230 patients with unexplained axonal neuropathies and disease onset ≥35 years. METHODS: We recruited patients, collected clinical data, and conducted whole-exome sequencing (WES; n = 126) and MME single-gene sequencing (n = 104). We further queried WES repositories for MME variants and measured blood levels of the MME-encoded protein neprilysin. RESULTS: In the WES cohort, the overall detection rate for assumed disease-causing variants in genes for CMT or other conditions associated with neuropathies was 18.3% (familial cases 26.4%, apparently sporadic cases 12.3%). MME was most frequently involved and accounted for 34.8% of genetically solved cases. The relevance of MME for late-onset neuropathies was further supported by detection of a comparable proportion of cases in an independent patient sample, preponderance of MME variants among patients compared to population frequencies, retrieval of additional late-onset neuropathy patients with MME variants from WES repositories, and low neprilysin levels in patients' blood samples. Transmission of MME variants was often consistent with an incompletely penetrant autosomal-dominant trait and less frequently with autosomal-recessive inheritance. CONCLUSIONS: A detectable fraction of unexplained late-onset axonal neuropathies is genetically determined, by variants in either CMT genes or genes involved in other conditions that affect the peripheral nerves and can mimic a CMT phenotype. MME variants can act as completely penetrant recessive alleles but also confer dominantly inherited susceptibility to axonal neuropathies in an aging population.


Assuntos
Envelhecimento , Neuropatia Hereditária Motora e Sensorial/genética , Neprilisina/genética , Idade de Início , Idoso , Envelhecimento/sangue , Doença de Charcot-Marie-Tooth/sangue , Doença de Charcot-Marie-Tooth/genética , Feminino , Predisposição Genética para Doença/genética , Neuropatia Hereditária Motora e Sensorial/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neprilisina/sangue , Sequenciamento do Exoma
3.
Ann Neurol ; 85(3): 316-330, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30706531

RESUMO

OBJECTIVE: Genetic modifiers in rare disease have long been suspected to contribute to the considerable variance in disease expression, including Charcot-Marie-Tooth disease type 1A (CMT1A). To address this question, the Inherited Neuropathy Consortium collected a large standardized sample of such rare CMT1A patients over a period of 8 years. CMT1A is caused in most patients by a uniformly sized 1.5 Mb duplication event involving the gene PMP22. METHODS: We genotyped DNA samples from 971 CMT1A patients on Illumina BeadChips. Genome-wide analysis was performed in a subset of 330 of these patients, who expressed the extremes of a hallmark symptom: mild and severe foot dorsiflexion strength impairment. SIPA1L2 (signal-induced proliferation-associated 1 like 2), the top identified candidate modifier gene, was expressed in the peripheral nerve, and our functional studies identified and confirmed interacting proteins using coimmunoprecipitation analysis, mass spectrometry, and immunocytochemistry. Chromatin immunoprecipitation and in vitro siRNA experiments were used to analyze gene regulation. RESULTS: We identified significant association of 4 single nucleotide polymorphisms (rs10910527, rs7536385, rs4649265, rs1547740) in SIPA1L2 with foot dorsiflexion strength (p < 1 × 10-7 ). Coimmunoprecipitation and mass spectroscopy studies identified ß-actin and MYH9 as SIPA1L2 binding partners. Furthermore, we show that SIPA1L2 is part of a myelination-associated coexpressed network regulated by the master transcription factor SOX10. Importantly, in vitro knockdown of SIPA1L2 in Schwannoma cells led to a significant reduction of PMP22 expression, hinting at a potential strategy for drug development. INTERPRETATION: SIPA1L2 is a potential genetic modifier of CMT1A phenotypic expressions and offers a new pathway to therapeutic interventions. ANN NEUROL 2019;85:316-330.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Pé/fisiopatologia , Proteínas Ativadoras de GTPase/genética , Genes Modificadores/genética , Debilidade Muscular/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Proteínas da Mielina/genética , Neurilemoma/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Ratos , Índice de Gravidade de Doença , Adulto Jovem
4.
Am J Hum Genet ; 102(3): 505-514, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499166

RESUMO

Although mutations in more than 90 genes are known to cause CMT, the underlying genetic cause of CMT remains unknown in more than 50% of affected individuals. The discovery of additional genes that harbor CMT2-causing mutations increasingly depends on sharing sequence data on a global level. In this way-by combining data from seven countries on four continents-we were able to define mutations in ATP1A1, which encodes the alpha1 subunit of the Na+,K+-ATPase, as a cause of autosomal-dominant CMT2. Seven missense changes were identified that segregated within individual pedigrees: c.143T>G (p.Leu48Arg), c.1775T>C (p.Ile592Thr), c.1789G>A (p.Ala597Thr), c.1801_1802delinsTT (p.Asp601Phe), c.1798C>G (p.Pro600Ala), c.1798C>A (p.Pro600Thr), and c.2432A>C (p.Asp811Ala). Immunostaining peripheral nerve axons localized ATP1A1 to the axolemma of myelinated sensory and motor axons and to Schmidt-Lanterman incisures of myelin sheaths. Two-electrode voltage clamp measurements on Xenopus oocytes demonstrated significant reduction in Na+ current activity in some, but not all, ouabain-insensitive ATP1A1 mutants, suggesting a loss-of-function defect of the Na+,K+ pump. Five mutants fall into a remarkably narrow motif within the helical linker region that couples the nucleotide-binding and phosphorylation domains. These findings identify a CMT pathway and a potential target for therapy development in degenerative diseases of peripheral nerve axons.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Genes Dominantes , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Criança , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , ATPase Trocadora de Sódio-Potássio/química , Adulto Jovem
5.
Brain ; 141(3): 662-672, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351582

RESUMO

Recessive mutations in the mitochondrial copper-binding protein SCO2, cytochrome c oxidase (COX) assembly protein, have been reported in several cases with fatal infantile cardioencephalomyopathy with COX deficiency. Significantly expanding the known phenotypic spectrum, we identified compound heterozygous variants in SCO2 in two unrelated patients with axonal polyneuropathy, also known as Charcot-Marie-Tooth disease type 4. Different from previously described cases, our patients developed predominantly motor neuropathy, they survived infancy, and they have not yet developed the cardiomyopathy that causes death in early infancy in reported patients. Both of our patients harbour missense mutations near the conserved copper-binding motif (CXXXC), including the common pathogenic variant E140K and a novel change D135G. In addition, each patient carries a second mutation located at the same loop region, resulting in compound heterozygote changes E140K/P169T and D135G/R171Q. Patient fibroblasts showed reduced levels of SCO2, decreased copper levels and COX deficiency. Given that another Charcot-Marie-Tooth disease gene, ATP7A, is a known copper transporter, our findings further underline the relevance of copper metabolism in Charcot-Marie-Tooth disease.


Assuntos
Proteínas de Transporte/genética , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Cobre/deficiência , Proteínas Mitocondriais/genética , Mutação/genética , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Axônios/patologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Criança , Análise Mutacional de DNA , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Chaperonas Moleculares , Consumo de Oxigênio/genética , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura
6.
Am J Hum Genet ; 99(3): 607-623, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27588448

RESUMO

Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained. We assumed age-dependent penetrance of mutations in a so far unknown gene causing late-onset CMT2. We screened 51 index case subjects with late-onset CMT2 for mutations by whole-exome (WES) and Sanger sequencing and subsequently queried WES repositories for further case subjects carrying mutations in the identified candidate gene. We studied nerve pathology and tissue levels and function of the abnormal protein in order to explore consequences of the mutations. Altogether, we observed heterozygous rare loss-of-function and missense mutations in MME encoding the metalloprotease neprilysin in 19 index case subjects diagnosed with axonal polyneuropathies or neurodegenerative conditions involving the peripheral nervous system. MME mutations segregated in an autosomal-dominant fashion with age-related incomplete penetrance and some affected individuals were isolated case subjects. We also found that MME mutations resulted in strongly decreased tissue availability of neprilysin and impaired enzymatic activity. Although neprilysin is known to degrade ß-amyloid, we observed no increased amyloid deposition or increased incidence of dementia in individuals with MME mutations. Detection of MME mutations is expected to increase the diagnostic yield in late-onset polyneuropathies, and it will be tempting to explore whether substances that can elevate neprilysin activity could be a rational option for treatment.


Assuntos
Axônios/patologia , Genes Dominantes/genética , Mutação/genética , Neprilisina/genética , Polineuropatias/genética , Polineuropatias/patologia , Tecido Adiposo/metabolismo , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Alelos , Peptídeos beta-Amiloides/metabolismo , Animais , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Análise Mutacional de DNA , Bases de Dados Genéticas , Demência/complicações , Demência/genética , Exoma/genética , Heterozigoto , Humanos , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Neprilisina/análise , Neprilisina/sangue , Neprilisina/deficiência , Penetrância , Polineuropatias/complicações , Pele/metabolismo , Nervo Sural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA