Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
EBioMedicine ; 80: 104053, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35576644

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic, immune-mediated inflammatory disease of the joints that has been associated with variation in the peripheral blood methylome. In this study, we aim to identify epigenetic variation that is associated with the response to tumor necrosis factor inhibitor (TNFi) therapy. METHODS: Peripheral blood genome-wide DNA methylation profiles were analyzed in a discovery cohort of 62 RA patients at baseline and at week 12 of TNFi therapy. DNA methylation of individual CpG sites and enrichment of biological pathways were evaluated for their association with drug response. Using a novel cell deconvolution approach, altered DNA methylation associated with TNFi response was also tested in the six main immune cell types in blood. Validation of the results was performed in an independent longitudinal cohort of 60 RA patients. FINDINGS: Treatment with TNFi was associated with significant longitudinal peripheral blood methylation changes in biological pathways related to RA (FDR<0.05). 139 biological functions were modified by therapy, with methylation levels changing systematically towards a signature similar to that of healthy controls. Differences in the methylation profile of T cell activation and differentiation, GTPase-mediated signaling, and actin filament organization pathways were associated with the clinical response to therapy. Cell type deconvolution analysis identified CpG sites in CD4+T, NK, neutrophils and monocytes that were significantly associated with the response to TNFi. INTERPRETATION: Our results show that treatment with TNFi restores homeostatic blood methylation in RA. The clinical response to TNFi is associated to methylation variation in specific biological pathways, and it involves cells from both the innate and adaptive immune systems. FUNDING: The Instituto de Salud Carlos III.


Assuntos
Antirreumáticos , Artrite Reumatoide , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Estudos de Coortes , Metilação de DNA , Humanos , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
2.
Eur J Clin Pharmacol ; 77(5): 697-707, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33205280

RESUMO

PURPOSE: This study hypothesized that drugs accumulate in the bloodstream of poor-metabolizing patients and may have more adverse effects and different pain perceptions and aimed to investigate the influence of CYP450 polymorphisms on acute postoperative pain, swelling, and trismus controlled by ibuprofen (600 mg) in 200 volunteers after dental extraction. In addition, surgical outcomes can determine pain, edema, and trismus and indicate inflammatory reactions after oral surgeries. METHODS: Genetic sequencing was performed to identify CYP450 polymorphisms and the surgical parameters evaluated: pre and postoperative swelling, trismus, and temperature; self-reported postoperative pain with visual analog scale (VAS); rescue medication consumed; and severity of adverse reactions. RESULTS: A multiple linear regression model with independent variables [single nucleotide polymorphisms (SNPs), BMI (body mass index), duration, and difficulty of surgery] and dependent variables [postoperative pain by sum of pain intensity difference (SPID), trismus, and swelling] was used for analysis. The duration of surgery was a predictor for pain at 8 h and 96 h after surgery, and BMI was a predictor for both swelling and trismus on the 2nd postoperative day. When evaluating CYP2C8 and C9 genotyped SNPs, it was observed that normal metabolizers showed higher pain levels than the intermediate/poor metabolizers on the postoperative periods as compared with time 0 h. In another analysis, the poor metabolizers for CYP2C8 and C9 presented lower levels of postoperative pain after 8 h and used rescue medication earlier than normal metabolizers. CONCLUSION: Ibuprofen 600 mg was very effective in controlling inflammatory pain after lower third molar surgeries, without relevant adverse reactions; although in a very subtle way, patients with poor metabolism had higher levels of pain in the first hours, and no longer after 8 h, and used pain relief medication earlier. TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov ID (NCT03169127), on March 16th, 2017.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Sistema Enzimático do Citocromo P-450/genética , Ibuprofeno/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Extração Dentária/efeitos adversos , Adolescente , Adulto , Índice de Massa Corporal , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C9/genética , Método Duplo-Cego , Edema/tratamento farmacológico , Edema/etiologia , Feminino , Humanos , Masculino , Dente Serotino/cirurgia , Duração da Cirurgia , Medição da Dor , Farmacogenética , Polimorfismo de Nucleotídeo Único , Trismo/tratamento farmacológico , Trismo/etiologia , Adulto Jovem
3.
Circulation ; 140(8): 645-657, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31424985

RESUMO

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.


Assuntos
Doença das Coronárias/diagnóstico , Ilhas de CpG/genética , Metilação de DNA/fisiologia , Leucócitos/fisiologia , Infarto do Miocárdio/diagnóstico , Adulto , Idoso , Estudos de Coortes , Doença das Coronárias/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Grupos Populacionais , Prognóstico , Estudos Prospectivos , Risco , Estados Unidos/epidemiologia
4.
Am J Clin Nutr ; 110(2): 437-450, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31165884

RESUMO

BACKGROUND: Folate and vitamin B-12 are essential micronutrients involved in the donation of methyl groups in cellular metabolism. However, associations between intake of these nutrients and genome-wide DNA methylation levels have not been studied comprehensively in humans. OBJECTIVE: The aim of this study was to assess whether folate and/or vitamin B-12 intake are asssociated with genome-wide changes in DNA methylation in leukocytes. METHODS: A large-scale epigenome-wide association study of folate and vitamin B-12 intake was performed on DNA from 5841 participants from 10 cohorts using Illumina 450k arrays. Folate and vitamin B-12 intakes were calculated from food-frequency questionnaires (FFQs). Continuous and categorical (low compared with high intake) linear regression mixed models were applied per cohort, controlling for confounders. A meta-analysis was performed to identify significant differentially methylated positions (DMPs) and regions (DMRs), and a pathway analysis was performed on the DMR annotated genes. RESULTS: The categorical model resulted in 6 DMPs, which are all negatively associated with folate intake, annotated to FAM64A, WRAP73, FRMD8, CUX1, and LCN8 genes, which have a role in cellular processes including centrosome localization, cell proliferation, and tumorigenesis. Regional analysis showed 74 folate-associated DMRs, of which 73 were negatively associated with folate intake. The most significant folate-associated DMR was a 400-base pair (bp) spanning region annotated to the LGALS3BP gene. In the categorical model, vitamin B-12 intake was associated with 29 DMRs annotated to 48 genes, of which the most significant was a 1100-bp spanning region annotated to the calcium-binding tyrosine phosphorylation-regulated gene (CABYR). Vitamin B-12 intake was not associated with DMPs. CONCLUSIONS: We identified novel epigenetic loci that are associated with folate and vitamin B-12 intake. Interestingly, we found a negative association between folate and DNA methylation. Replication of these methylation loci is necessary in future studies.


Assuntos
Dieta , Epigenômica , Ácido Fólico/administração & dosagem , Estudo de Associação Genômica Ampla , Vitamina B 12/administração & dosagem , Adulto , Idoso , Metilação de DNA , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
5.
Clin Epigenetics ; 10: 56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713391

RESUMO

Background: Recently, epigenetic age acceleration-or older epigenetic age in comparison to chronological age-has been robustly associated with mortality and various morbidities. However, accelerated epigenetic aging has not been widely investigated in relation to inflammatory or metabolic markers, including postprandial lipids. Methods: We estimated measures of epigenetic age acceleration in 830 Caucasian participants from the Genetics Of Lipid Lowering Drugs and diet Network (GOLDN) considering two epigenetic age calculations based on differing sets of 5'-Cytosine-phosphate-guanine-3' genomic site, derived from the Horvath and Hannum DNA methylation age calculators, respectively. GOLDN participants underwent a standardized high-fat meal challenge after fasting for at least 8 h followed by timed blood draws, the last being 6 h postmeal. We used adjusted linear mixed models to examine the association of the epigenetic age acceleration estimate with fasting and postprandial (0- and 6-h time points) low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels as well as five fasting inflammatory markers plus adiponectin. Results: Both DNA methylation age estimates were highly correlated with chronological age (r > 0.90). We found that the Horvath and Hannum measures of epigenetic age acceleration were moderately correlated (r = 0.50). The regression models revealed that the Horvath age acceleration measure exhibited marginal associations with increased postprandial HDL (p = 0.05), increased postprandial total cholesterol (p = 0.06), and decreased soluble interleukin 2 receptor subunit alpha (IL2sRα, p = 0.02). The Hannum measure of epigenetic age acceleration was inversely associated with fasting HDL (p = 0.02) and positively associated with postprandial TG (p = 0.02), interleukin-6 (IL6, p = 0.007), C-reactive protein (C-reactive protein, p = 0.0001), and tumor necrosis factor alpha (TNFα, p = 0.0001). Overall, the observed effect sizes were small and the association of the Hannum residual with inflammatory markers was attenuated by adjustment for estimated T cell type percentages. Conclusions: Our study demonstrates that epigenetic age acceleration in blood relates to inflammatory biomarkers and certain lipid classes in Caucasian individuals of the GOLDN study. Future studies should consider epigenetic age acceleration in other tissues and extend the analysis to other ethnic groups.


Assuntos
Envelhecimento/genética , Biomarcadores/sangue , Metilação de DNA , Epigenômica/métodos , População Branca/genética , Adiponectina/sangue , Adulto , Idoso , Envelhecimento/sangue , Proteína C-Reativa/metabolismo , Ilhas de CpG , Dieta Hiperlipídica/efeitos adversos , Jejum/sangue , Feminino , Estudo de Associação Genômica Ampla , Humanos , Interleucina-6/sangue , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Masculino , Pessoa de Meia-Idade , Período Pós-Prandial , Análise de Regressão , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
6.
JAMA Cardiol ; 3(6): 463-472, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617535

RESUMO

Importance: Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine with manifold consequences for mammalian pathophysiology, including cardiovascular disease. A deeper understanding of TNF-α biology may enhance treatment precision. Objective: To conduct an epigenome-wide analysis of blood-derived DNA methylation and TNF-α levels and to assess the clinical relevance of findings. Design, Setting, and Participants: This meta-analysis assessed epigenome-wide associations in circulating TNF-α concentrations from 5 cohort studies and 1 interventional trial, with replication in 3 additional cohort studies. Follow-up analyses investigated associations of identified methylation loci with gene expression and incident coronary heart disease; this meta-analysis included 11 461 participants who experienced 1895 coronary events. Exposures: Circulating TNF-α concentration. Main Outcomes and Measures: DNA methylation at approximately 450 000 loci, neighboring DNA sequence variation, gene expression, and incident coronary heart disease. Results: The discovery cohort included 4794 participants, and the replication study included 816 participants (overall mean [SD] age, 60.7 [8.5] years). In the discovery stage, circulating TNF-α levels were associated with methylation of 7 cytosine-phosphate-guanine (CpG) sites, 3 of which were located in or near DTX3L-PARP9 at cg00959259 (ß [SE] = -0.01 [0.003]; P = 7.36 × 10-8), cg08122652 (ß [SE] = -0.008 [0.002]; P = 2.24 × 10-7), and cg22930808(ß [SE] = -0.01 [0.002]; P = 6.92 × 10-8); NLRC5 at cg16411857 (ß [SE] = -0.01 [0.002]; P = 2.14 × 10-13) and cg07839457 (ß [SE] = -0.02 [0.003]; P = 6.31 × 10-10); or ABO, at cg13683939 (ß [SE] = 0.04 [0.008]; P = 1.42 × 10-7) and cg24267699 (ß [SE] = -0.009 [0.002]; P = 1.67 × 10-7), after accounting for multiple testing. Of these, negative associations between TNF-α concentration and methylation of 2 loci in NLRC5 and 1 in DTX3L-14 PARP9 were replicated. Replicated TNF-α-linked CpG sites were associated with 9% to 19% decreased risk of incident coronary heart disease per 10% higher methylation per CpG site (cg16411857: hazard ratio [HR], 0.86; 95% CI, 0.78-1.95; P = .003; cg07839457: HR, 0.89; 95% CI, 0.80-0.94; P = 3.1 × 10-5; cg00959259: HR, 0.91; 95% CI, 0.84-0.97; P = .002; cg08122652: HR, 0.81; 95% CI, 0.74-0.89; P = 2.0 × 10-5). Conclusions and Relevance: We identified and replicated novel epigenetic correlates of circulating TNF-α concentration in blood samples and linked these loci to coronary heart disease risk, opening opportunities for validation and therapeutic applications.


Assuntos
Doença das Coronárias/sangue , Doença das Coronárias/epidemiologia , Metilação de DNA , Fator de Necrose Tumoral alfa/sangue , Idoso , Feminino , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade
7.
Mult Scler ; 24(10): 1288-1300, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28766461

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors. OBJECTIVE: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC). METHODS: We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression. RESULTS: We observed significant methylation differences in the VMP1/MIR21 locus, with RR-MS displaying higher methylation compared to SP-MS and HC. VMP1/MIR21 methylation did not correlate with a known MS risk variant in VMP1 or smoking but displayed a significant negative correlation with age and the levels of mature miR-21 in CD4+ T cells. Accordingly, RR-MS displayed lower levels of miR-21 compared to SP-MS, which might reflect differences in age between the groups, and healthy individuals and a significant enrichment of up-regulated miR-21 target genes. CONCLUSION: Disease-related changes in epigenetic marking of MIR21 in RR-MS lead to differences in miR-21 expression with a consequence on miR-21 target genes.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Regulação da Expressão Gênica/fisiologia , MicroRNAs/genética , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Adulto , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Regulação para Cima
8.
BMC Cancer ; 17(1): 273, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28412973

RESUMO

BACKGROUND: Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. METHODS: We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. RESULTS: We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. CONCLUSIONS: DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Citosina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fatores de Transcrição/metabolismo
9.
Circ Cardiovasc Genet ; 9(5): 436-447, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27651444

RESUMO

BACKGROUND: DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. METHODS AND RESULTS: To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine-phosphate-guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1×10-7 (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1×10-7 (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. CONCLUSIONS: Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.


Assuntos
Metilação de DNA , Epigênese Genética , Fumar/efeitos adversos , Fumar/genética , Transcriptoma , Idoso , Estudos de Casos e Controles , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Leucócitos/química , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fumar/etnologia , Abandono do Hábito de Fumar , Prevenção do Hábito de Fumar , Fatores de Tempo
10.
Mol Nutr Food Res ; 60(2): 410-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26518637

RESUMO

SCOPE: Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. METHODS AND RESULTS: Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10(-7) ). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. CONCLUSION: Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs.


Assuntos
Metilação de DNA/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Interleucina-6/genética , Polimorfismo de Nucleotídeo Único , Adulto , Ilhas de CpG , Ácidos Graxos Ômega-3/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/efeitos dos fármacos
11.
Obesity (Silver Spring) ; 23(7): 1493-501, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26110892

RESUMO

OBJECTIVE: To conduct an epigenome-wide analysis of DNA methylation and obesity traits. METHODS: DNA methylation was quantified in CD4+ T-cells using the Illumina Infinium HumanMethylation450 array in 991 participants of the Genetics of Lipid Lowering Drugs and Diet Network. Methylation at individual cytosine-phosphate-guanine (CpG) sites as a function of body mass index (BMI) and waist circumference (WC), adjusting for age, gender, study site, T-cell purity, smoking, and family structure, was modeled. RESULTS: Epigenome-wide significant associations between eight CpG sites and BMI and five CpG sites and WC, successfully replicating the top hits in whole blood samples from the Framingham Heart Study (n = 2,377) and the Atherosclerosis Risk in Communities study (n = 2,097), were found. Top findings were in CPT1A (meta-analysis P = 2.7 × 10(-43) for BMI and 9.9 × 10(-23) for WC), PHGDH (meta-analysis P = 2.0 × 10(-15) for BMI and 4.0 × 10(-9) for WC), CD38 (meta-analysis P = 6.3 × 10(-11) for BMI and 1.6 × 10(-12) for WC), and long intergenic non-coding RNA 00263 (meta-analysis P = 2.2 × 10(-16) for BMI and 8.9 × 10(-14) for WC), regions with biologically plausible relationships to adiposity. CONCLUSIONS: This large-scale epigenome-wide study discovered and replicated robust associations between DNA methylation at CpG loci and obesity indices, laying the groundwork for future diagnostic and/or therapeutic applications.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica/métodos , Estudo de Associação Genômica Ampla/métodos , Circunferência da Cintura/genética , Índice de Massa Corporal , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fenótipo
12.
BMC Med ; 12: 235, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25472429

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is the tenth most commonly diagnosed cancer in the United States. While it is usually lethal when metastatic, RCC is successfully treated with surgery when tumors are confined to the kidney and have low tumor volume. Because most early stage renal tumors do not result in symptoms, there is a strong need for biomarkers that can be used to detect the presence of the cancer as well as to monitor patients during and after therapy. METHODS: We examined genome-wide DNA methylation alterations in renal cell carcinomas of diverse histologies and benign adjacent kidney tissues from 96 patients. RESULTS: We observed widespread methylation differences between tumors and benign adjacent tissues, particularly in immune-, G-protein coupled receptor-, and metabolism-related genes. Additionally, we identified a single panel of DNA methylation biomarkers that reliably distinguishes tumor from benign adjacent tissue in all of the most common kidney cancer histologic subtypes, and a second panel does the same specifically for clear cell renal cell carcinoma tumors. This set of biomarkers were validated independently with excellent performance characteristics in more than 1,000 tissues in The Cancer Genome Atlas clear cell, papillary, and chromophobe renal cell carcinoma datasets. CONCLUSIONS: These DNA methylation profiles provide insights into the etiology of renal cell carcinoma and, most importantly, demonstrate clinically applicable biomarkers for use in early detection of kidney cancer.


Assuntos
Carcinoma de Células Renais/diagnóstico , Metilação de DNA/genética , Neoplasias Renais/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
13.
Chronobiol Int ; 31(9): 1034-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25075435

RESUMO

Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n=991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461,281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p=9.2×10(-8)), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p=1.5×10(-10)) and rs4405858 (p=1.9×10(-9)). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism.


Assuntos
Ritmo Circadiano/genética , Metilação de DNA , Variação Genética/genética , Proteína Quinase C/genética , Luz Solar , Adulto , Idoso , Idoso de 80 Anos ou mais , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , América do Norte/etnologia
14.
Genome Res ; 23(3): 555-67, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23325432

RESUMO

As studies of DNA methylation increase in scope, it has become evident that methylation has a complex relationship with gene expression, plays an important role in defining cell types, and is disrupted in many diseases. We describe large-scale single-base resolution DNA methylation profiling on a diverse collection of 82 human cell lines and tissues using reduced representation bisulfite sequencing (RRBS). Analysis integrating RNA-seq and ChIP-seq data illuminates the functional role of this dynamic mark. Loci that are hypermethylated across cancer types are enriched for sites bound by NANOG in embryonic stem cells, which supports and expands the model of a stem/progenitor cell signature in cancer. CpGs that are hypomethylated across cancer types are concentrated in megabase-scale domains that occur near the telomeres and centromeres of chromosomes, are depleted of genes, and are enriched for cancer-specific EZH2 binding and H3K27me3 (repressive chromatin). In noncancer samples, there are cell-type specific methylation signatures preserved in primary cell lines and tissues as well as methylation differences induced by cell culture. The relationship between methylation and expression is context-dependent, and we find that CpG-rich enhancers bound by EP300 in the bodies of expressed genes are unmethylated despite the dense gene-body methylation surrounding them. Non-CpG cytosine methylation occurs in human somatic tissue, is particularly prevalent in brain tissue, and is reproducible across many individuals. This study provides an atlas of DNA methylation across diverse and well-characterized samples and enables new discoveries about DNA methylation and its role in gene regulation and disease.


Assuntos
Ilhas de CpG , Metilação de DNA , Linhagem Celular Tumoral , Cromatina , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Alinhamento de Sequência , Análise de Sequência de DNA , Sulfitos/metabolismo
15.
G3 (Bethesda) ; 2(9): 1047-56, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22973542

RESUMO

Vertebrate sensory systems have evolved remarkable diversity, but little is known about the underlying genetic mechanisms. The lateral line sensory system of aquatic vertebrates is a promising model for genetic investigations of sensory evolution because there is extensive variation within and between species, and this variation is easily quantified. In the present study, we compare the lateral line sensory system of threespine sticklebacks (Gasterosteus aculeatus) from an ancestral marine and a derived benthic lake population. We show that lab-raised individuals from these populations display differences in sensory neuromast number, neuromast patterning, and groove morphology. Using genetic linkage mapping, we identify regions of the genome that influence different aspects of lateral line morphology. Distinct loci independently affect neuromast number on different body regions, suggesting that a modular genetic structure underlies the evolution of peripheral receptor number in this sensory system. Pleiotropy and/or tight linkage are also important, as we identify a region on linkage group 21 that affects multiple aspects of lateral line morphology. Finally, we detect epistasis between a locus on linkage group 4 and a locus on linkage group 21; interactions between these loci contribute to variation in neuromast pattern. Our results reveal a complex genetic architecture underlying the evolution of the stickleback lateral line sensory system. This study further uncovers a genetic relationship between sensory morphology and non-neural traits (bony lateral plates), creating an opportunity to investigate morphological constraints on sensory evolution in a vertebrate model system.


Assuntos
Variação Genética , Sistema da Linha Lateral/anatomia & histologia , Sistema da Linha Lateral/metabolismo , Smegmamorpha/anatomia & histologia , Smegmamorpha/genética , Animais , Padronização Corporal/genética , Mapeamento Cromossômico , Epistasia Genética , Feminino , Estudos de Associação Genética , Escore Lod , Masculino , Locos de Características Quantitativas , Esqueleto
16.
Genome Res ; 21(7): 1017-27, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21521786

RESUMO

Candidate gene-based studies have identified a handful of aberrant CpG DNA methylation events in prostate cancer. However, DNA methylation profiles have not been compared on a large scale between prostate tumor and normal prostate, and the mechanisms behind these alterations are unknown. In this study, we quantitatively profiled 95 primary prostate tumors and 86 benign adjacent prostate tissue samples for their DNA methylation levels at 26,333 CpGs representing 14,104 gene promoters by using the Illumina HumanMethylation27 platform. A 2-class Significance Analysis of this data set revealed 5912 CpG sites with increased DNA methylation and 2151 CpG sites with decreased DNA methylation in tumors (FDR < 0.8%). Prediction Analysis of this data set identified 87 CpGs that are the most predictive diagnostic methylation biomarkers of prostate cancer. By integrating available clinical follow-up data, we also identified 69 prognostic DNA methylation alterations that correlate with biochemical recurrence of the tumor. To identify the mechanisms responsible for these genome-wide DNA methylation alterations, we measured the gene expression levels of several DNA methyltransferases (DNMTs) and their interacting proteins by TaqMan qPCR and observed increased expression of DNMT3A2, DNMT3B, and EZH2 in tumors. Subsequent transient transfection assays in cultured primary prostate cells revealed that DNMT3B1 and DNMT3B2 overexpression resulted in increased methylation of a substantial subset of CpG sites that showed tumor-specific increased methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Impressões Digitais de DNA/métodos , Metilação de DNA , Neoplasias da Próstata/genética , Biomarcadores , Linhagem Celular Tumoral , Análise por Conglomerados , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Células Epiteliais/metabolismo , Seguimentos , Humanos , Masculino , Complexo Repressor Polycomb 2 , Regiões Promotoras Genéticas , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA