Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(4): e0166521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311585

RESUMO

Mycofactocin is a new class of peptide-derived redox cofactors present in a selected group of bacteria including Mycobacterium tuberculosis. Mycofactocin biosynthesis requires at least six genes, including mftD, encoding putative lactate dehydrogenase, which catalyzes the penultimate biosynthetic step. Cellular functions remained unknown until recent reports on the significance of mycofactocin in primary alcohol metabolism. Here, we show that mftD transcript levels were increased in hypoxia-adapted M. tuberculosis; however, mftD functionality was found likely dispensable for l-lactate metabolism. Targeted deletion of mftD reduced the survival of M. tuberculosis in in vitro and in vivo hypoxia models but increased the bacterial growth in glucose-containing broth as well as in the lungs and spleens, albeit modestly, of aerosol-infected C57BL/6J mice. The cause of this growth advantage remains unestablished; however, the mftD-deficient M. tuberculosis strain had reduced NAD(H)/NADP(H) levels and glucose-6-phosphate dehydrogenase activity with no impairment in phthiocerol dimycocerosate lipid synthesis. An ultrastructural examination of parental and mycofactocin biosynthesis gene mutants in M. tuberculosis, M. marinum, and M. smegmatis showed no altered cell morphology and size except the presence of outer membrane-bound fibril-like features only in a mutant subpopulation. A cell surface-protein analysis of M. smegmatis mycofactocin biosynthesis mutants with trypsin revealed differential abundances of a subset of proteins that are known to interact with mycofactocin and their homologs that can enhance protein aggregation or amyloid-like fibrils in riboflavin-starved eukaryotic cells. In sum, phenotypic analyses of the mutant strain implicate the significance of MftD/mycofactocin in M. tuberculosis growth and persistence in its host. IMPORTANCE Characterization of proteins with unknown functions is a critical research priority as the intracellular growth and metabolic state of Mycobacterium tuberculosis, the causative agent of tuberculosis, remain poorly understood. Mycofactocin is a peptide-derived redox cofactor present in almost all mycobacterial species; however, its functional relevance in M. tuberculosis pathogenesis and host survival has never been studied experimentally. In this study, we examine the phenotypes of an M. tuberculosis mutant strain lacking a key mycofactocin biosynthesis gene in in vitro and disease-relevant mouse models. Our results pinpoint the multifaceted role of mycofactocin in M. tuberculosis growth, hypoxia adaptation, glucose metabolism, and redox homeostasis. This evidence strongly implies that mycofactocin could fulfill specialized biochemical functions that increase the survival fitness of mycobacteria within their specific niche.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Peptídeos/metabolismo , Anaerobiose , Animais , Vias Biossintéticas , Feminino , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Peptídeos/genética
2.
Dis Model Mech ; 13(3)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32034005

RESUMO

Lactate dehydrogenase A (LDHA) mediates interconversion of pyruvate and lactate, and increased lactate turnover is exhibited by malignant and infected immune cells. Hypoxic lung granuloma in Mycobacterium tuberculosis-infected animals present elevated levels of Ldha and lactate. Such alterations in the metabolic milieu could influence the outcome of host-M. tuberculosis interactions. Given the central role of LDHA for tumorigenicity, targeting lactate metabolism is a promising approach for cancer therapy. Here, we sought to determine the importance of LDHA for tuberculosis (TB) disease progression and its potential as a target for host-directed therapy. To this end, we orally administered FX11, a known small-molecule NADH-competitive LDHA inhibitor, to M. tuberculosis-infected C57BL/6J mice and Nos2-/- mice with hypoxic necrotizing lung TB lesions. FX11 did not inhibit M. tuberculosis growth in aerobic/hypoxic liquid culture, but modestly reduced the pulmonary bacterial burden in C57BL/6J mice. Intriguingly, FX11 administration limited M. tuberculosis replication and onset of necrotic lung lesions in Nos2-/- mice. In this model, isoniazid (INH) monotherapy has been known to exhibit biphasic killing kinetics owing to the probable selection of an INH-tolerant bacterial subpopulation. However, adjunct FX11 treatment corrected this adverse effect and resulted in sustained bactericidal activity of INH against M. tuberculosis As a limitation, LDHA inhibition as an underlying cause of FX11-mediated effect could not be established as the on-target effect of FX11 in vivo was unconfirmed. Nevertheless, this proof-of-concept study encourages further investigation on the underlying mechanisms of LDHA inhibition and its significance in TB pathogenesis.


Assuntos
Interações Hospedeiro-Patógeno/efeitos dos fármacos , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Naftalenos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/metabolismo
3.
J Vis Exp ; (151)2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31566594

RESUMO

Neutrophil granulocytes, also called polymorphonuclear leukocytes (PMN) due to their lobulated nucleus, are the most abundant type of leukocytes. They mature in the bone marrow and are released into the peripheral blood, where they circulate for about 6-8 h; however, in tissue, they can survive for days. By diapedesis through the endothelium, they leave the blood stream, enter tissues, and migrate towards the site of an infection following chemotactic gradients. Neutrophils can combat invading microorganisms by phagocytosis, degranulation, and generation of neutrophil extracellular traps (NETs). This protocol will help to detect NETs in paraffin-embedded tissue. NETs are the result of a process called NETosis, which leads to the release of nuclear, granular, and cytoplasmic components either from living (vital NETosis) or dying (suicidal NETosis) neutrophils. In vitro, NETs form cloud-like structures, which occupy a space several times larger than that of the cells from which they descended. The backbone of NETs is chromatin, to which a selection of proteins and peptides originating from granules and cytoplasm are bound. Thereby, a high local concentration of toxic compounds is maintained so that NETs can capture and inactivate a variety of pathogens including bacteria, fungi, viruses, and parasites, while diffusion of the highly active NET components leading to damage in neighboring tissue is limited. Nevertheless, in recent years it has become apparent that NETs, if generated in abundance or cleared insufficiently, do have pathological potential ranging from autoimmune diseases to cancer. Thus, detection of NETs in tissue samples may have diagnostic significance, and the detection of NETs in diseased tissue can influence the treatment of patients. Since paraffin-embedded tissue samples are the standard specimen used for pathological analysis, it was sought to establish a protocol for fluorescent staining of NET components in paraffin-embedded tissue using commercially available antibodies.


Assuntos
Armadilhas Extracelulares/metabolismo , Imunofluorescência/métodos , Neutrófilos/metabolismo , Inclusão em Parafina , Animais , Humanos , Camundongos
4.
Eur J Immunol ; 49(4): 590-599, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30758851

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease that has high morbidity and can result in multi-organ damage. SLE is characterized by dysregulated activation of T- and B-lymphocytes and the production of autoantibodies directed against nuclear components. The endonuclease deoxyribonuclease 1 (DNase1) is abundant in blood and a subset of SLE patients have mutations in DNASE1. Furthermore, a report showed that Dnase1-deficient mice develop an SLE-like disease, but these mice also carry a deletion of the gene adjacent to Dnase1, which encodes the chaperone TRAP1/HSP75. We generated a murine strain deficient in Dnase1 with an intact Trap1 gene to examine if a lack of DNase1 is responsible for the development of a spontaneous SLE-like disease. We show that the Dnase1-deficient mice do indeed develop an SLE-like phenotype with elevated autoantibody production by 9 months and kidney damage by 12 months. Notably, this model recapitulates the female bias seen in human SLE patients since female Dnase1-deficient mice produced the highest concentrations of autoantibodies and had more severe kidney damage than males. Since there is currently no cure for SLE the protective role of DNase1 as demonstrated in our study remains of great therapeutic interest.


Assuntos
Desoxirribonuclease I/deficiência , Estudos de Associação Genética , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/etiologia , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Biópsia , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética/métodos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/etiologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Masculino , Camundongos , Camundongos Knockout , Fatores Sexuais
5.
J Exp Med ; 216(2): 350-368, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30647120

RESUMO

Heart failure due to dilated cardiomyopathy is frequently caused by myocarditis. However, the pathogenesis of myocarditis remains incompletely understood. Here, we report the presence of neutrophil extracellular traps (NETs) in cardiac tissue of patients and mice with myocarditis. Inhibition of NET formation in experimental autoimmune myocarditis (EAM) of mice substantially reduces inflammation in the acute phase of the disease. Targeting the cytokine midkine (MK), which mediates NET formation in vitro, not only attenuates NET formation in vivo and the infiltration of polymorphonuclear neutrophils (PMNs) but also reduces fibrosis and preserves systolic function during EAM. Low-density lipoprotein receptor-related protein 1 (LRP1) acts as the functionally relevant receptor for MK-induced PMN recruitment as well as NET formation. In summary, NETosis substantially contributes to the pathogenesis of myocarditis and drives cardiac inflammation, probably via MK, which promotes PMN trafficking and NETosis. Thus, MK as well as NETs may represent novel therapeutic targets for the treatment of cardiac inflammation.


Assuntos
Doenças Autoimunes/imunologia , Movimento Celular/imunologia , Armadilhas Extracelulares/imunologia , Midkina/imunologia , Miocardite/imunologia , Miocárdio/imunologia , Neutrófilos/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Movimento Celular/genética , Armadilhas Extracelulares/genética , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Camundongos , Camundongos Transgênicos , Midkina/genética , Miocardite/genética , Miocardite/patologia , Miocárdio/patologia , Neutrófilos/patologia , Receptores de LDL/genética , Receptores de LDL/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia
6.
Dev Cell ; 43(4): 449-462.e5, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29103955

RESUMO

Neutrophils are essential for immune defense and can respond to infection by releasing chromatin in the form of neutrophil extracellular traps (NETs). Here we show that NETs are induced by mitogens and accompanied by induction of cell-cycle markers, including phosphorylation of the retinoblastoma protein and lamins, nuclear envelope breakdown, and duplication of centrosomes. We identify cyclin-dependent kinases 4 and 6 (CDK4/6) as essential regulators of NETs and show that the response is inhibited by the cell-cycle inhibitor p21Cip. CDK6, in neutrophils, is required for clearance of the fungal pathogen Candida albicans. Our data describe a function for CDK4/6 in immunity.


Assuntos
Ciclo Celular/fisiologia , Armadilhas Extracelulares/metabolismo , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Animais , Ciclo Celular/imunologia , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Armadilhas Extracelulares/imunologia , Camundongos Transgênicos , Fosforilação , Proteína do Retinoblastoma/imunologia , Proteína do Retinoblastoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA