Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(5): 100301, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37228755

RESUMO

Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state. These cells were absent in healthy livers but increasingly prevalent as chronic liver disease progressed. Copy number variation (CNV) analysis of microdissected tissue demonstrated that daHep-enriched regions are riddled with structural variants, suggesting these cells represent a pre-malignant intermediary. Integrated analysis of three recent human snRNA-seq datasets confirmed the presence of a similar phenotype in human chronic liver disease and further supported its enhanced mutational burden. Importantly, we show that high daHep levels precede carcinogenesis and predict a higher risk of hepatocellular carcinoma development. These findings may change the way chronic liver disease patients are staged, surveilled, and risk stratified.

2.
Cancers (Basel) ; 15(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36980694

RESUMO

Chronic pancreatitis increases the risk of developing pancreatic cancer through the upregulation of pathways favouring proliferation, fibrosis, and sustained inflammation. We established in previous studies that the ligand tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) signals through its cognate receptor fibroblast growth factor-inducible 14 (Fn14) to regulate these underlying cellular processes in the chronic liver injury niche. However, the role of the TWEAK/Fn14 signalling pathway in pancreatic disease is entirely unknown. An analysis of publicly available datasets demonstrated that the TWEAK receptor Fn14 is upregulated in pancreatitis and pancreatic adenocarcinoma, with single cell RNA sequencing revealing pancreatic ductal cells as the main Fn14 producers. We then used choline-deficient, ethionine-supplemented (CDE) diet feeding of wildtype C57BL/6J and Fn14 knockout littermates to (a) confirm CDE treatment as a suitable model of chronic pancreatitis and (b) to investigate the role of the TWEAK/Fn14 signalling pathway in pancreatic ductal proliferation, as well as fibrotic and inflammatory cell dynamics. Our time course data obtained at three days, three months, and six months of CDE treatment reveal that a lack of TWEAK/Fn14 signalling significantly inhibits the establishment and progression of the tissue microenvironment in CDE-induced chronic pancreatitis, thus proposing the TWEAK/Fn14 pathway as a novel therapeutic target.

3.
Malays J Pathol ; 40(3): 359-371, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30580370

RESUMO

INTRODUCTION: Primary pancreatic lymphomas are extremely rare. Clinically, primary pancreatic lymphoma mimics symptoms of carcinoma of the pancreatic head. Clinical and radiological features may overlap with other pancreatic conditions such as carcinoma, neuroendocrine tumours and autoimmune pancreatitis. CASE REPORT: We report a case of a 75-year-old man who presented with symptoms of obstructive jaundice. Ultrasonography and computed tomography (CT) showed an ill-defined lobulated soft tissue lesion at the head/uncinate process of the pancreas measuring 4.5 x 4.9 x 5.8 cm. The patient underwent pancreaticoduodenectomy for suspected pancreatic head/uncinate process carcinoma. Histopathology and immunohistochemical assessment of the pancreatic lesion established the diagnosis of a low-grade follicular lymphoma. DISCUSSION: Clinical and imaging features of primary pancreatic lymphoma may often overlap with pancreatic carcinoma. There is a value of obtaining preoperative tissue diagnosis such as tissue biopsy and fine needle aspiration (FNA) cytology with or without flow cytometry to make an accurate diagnosis of non-Hodgkin lymphoma and alleviate the need of more radical surgery in pancreatic lymphoma.


Assuntos
Carcinoma/patologia , Linfoma Folicular/patologia , Neoplasias Pancreáticas/patologia , Idoso , Diagnóstico Diferencial , Humanos , Masculino
4.
JCI Insight ; 3(24)2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30568043

RESUMO

Sialic acids are important components of glycoproteins and glycolipids essential for cellular communication, infection, and metastasis. The importance of sialic acid biosynthesis in human physiology is well illustrated by the severe metabolic disorders in this pathway. However, the biological role of sialic acid catabolism in humans remains unclear. Here, we present evidence that sialic acid catabolism is important for heart and skeletal muscle function and development in humans and zebrafish. In two siblings, presenting with sialuria, exercise intolerance/muscle wasting, and cardiac symptoms in the brother, compound heterozygous mutations [chr1:182775324C>T (c.187C>T; p.Arg63Cys) and chr1:182772897A>G (c.133A>G; p.Asn45Asp)] were found in the N-acetylneuraminate pyruvate lyase gene (NPL). In vitro, NPL activity and sialic acid catabolism were affected, with a cell-type-specific reduction of N-acetyl mannosamine (ManNAc). A knockdown of NPL in zebrafish resulted in severe skeletal myopathy and cardiac edema, mimicking the human phenotype. The phenotype was rescued by expression of wild-type human NPL but not by the p.Arg63Cys or p.Asn45Asp mutants. Importantly, the myopathy phenotype in zebrafish embryos was rescued by treatment with the catabolic products of NPL: N-acetyl glucosamine (GlcNAc) and ManNAc; the latter also rescuing the cardiac phenotype. In conclusion, we provide the first report to our knowledge of a human defect in sialic acid catabolism, which implicates an important role of the sialic acid catabolic pathway in mammalian muscle physiology, and suggests opportunities for monosaccharide replacement therapy in human patients.


Assuntos
Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Edema Cardíaco/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Células HEK293 , Hexosaminas/metabolismo , Humanos , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Doenças Musculares/fisiopatologia , Mutação , Oxo-Ácido-Liases/uso terapêutico , Doença do Armazenamento de Ácido Siálico/metabolismo , Adulto Jovem , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA