RESUMO
Medullary thyroid carcinoma contributes to about 3-4% of thyroid cancers and affects C cells rather than follicular cells. Thyroid C cell differentiation from human pluripotent stem cells has not been reported. We report the stepwise differentiation of human embryonic stem cells into thyroid C cell-like cells through definitive endoderm and anterior foregut endoderm and ultimobranchial body-like intermediates in monolayer and 3D Matrigel culture conditions. The protocol involved sequential treatment with interferon/transferrin/selenium/pyruvate, foetal bovine serum, and activin A, then IGF-1 (Insulin-like growth factor 1), on the basis of embryonic thyroid developmental sequence. As well as expressing C cell lineage relative to follicular-lineage markers by qPCR (quantitative polymerase chain reaction) and immunolabelling, these cells by ELISA (enzyme-linked immunoassay) exhibited functional properties in vitro of calcitonin storage and release of calcitonin on calcium challenge. This method will contribute to developmental studies of the human thyroid gland and facilitate in vitro modelling of medullary thyroid carcinoma and provide a valuable platform for drug screening.
Assuntos
Células-Tronco Pluripotentes/citologia , Glândula Tireoide/citologia , Alicerces Teciduais/química , Biomarcadores/metabolismo , Calcitonina/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Endoderma/citologia , Trato Gastrointestinal/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Laminina/farmacologia , Sistemas Neurossecretores/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Proteoglicanas/farmacologiaRESUMO
Friedreich ataxia (FRDA) is an autosomal recessive disease characterized by degeneration of dorsal root ganglia (DRG) sensory neurons, which is due to low levels of the mitochondrial protein Frataxin. To explore cell replacement therapies as a possible approach to treat FRDA, we examined transplantation of sensory neural progenitors derived from human embryonic stem cells (hESC) and FRDA induced pluripotent stem cells (iPSC) into adult rodent DRG regions. Our data showed survival and differentiation of hESC and FRDA iPSC-derived progenitors in the DRG 2 and 8 weeks post-transplantation, respectively. Donor cells expressed neuronal markers, including sensory and glial markers, demonstrating differentiation to these lineages. These results are novel and a highly significant first step in showing the possibility of using stem cells as a cell replacement therapy to treat DRG neurodegeneration in FRDA as well as other peripheral neuropathies.
Assuntos
Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso Periférico , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/terapia , Gânglios Espinais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Receptoras SensoriaisRESUMO
Here, we found two genomic safe harbor (GSH) candidates from chromosomes 3 and 8, based on large-scale population-based cohort data from 4,694 Koreans by CNV analysis. Furthermore, estimated genotype of these CNVRs was validated by quantitative real-time PCR, and epidemiological data examined no significant genetic association between diseases or traits and two CNVRs. After screening the GSH candidates by in silico approaches, we designed TALEN pairs to integrate EGFP expression cassette into human cell lines in order to confirm the functionality of GSH candidates in an in vitro setting. As a result, transgene insertion into one of the two loci using TALEN showed robust transgene expression comparable to that with an AAVS1 site without significantly perturbing neighboring genes. Changing the promoter or cell type did not noticeably disturb this trend. Thus, we could validate two CNVRs as a site for effective and safe transgene insertion in human cells.
RESUMO
There are a vast range of diseases and disorders that are neurocristopathic in origin, including Hirschsprung's disease, pheochromocytoma, familial dysautonomia, craniofacial disorders, and melanomas. Having a source of human neural crest cells is highly valuable for investigating potential treatments for such diseases. This chapter describes a robust and well-characterized protocol for deriving neural crest from human pluripotent stem cells (hPSCs), which can then be differentiated to neuronal and non-neuronal lineages. The protocol is adapted to suit hPSC maintenance as a monolayer bulk culture or as manual-passaged colonies, which makes it widely applicable to researchers that may use different systems for hPSC maintenance.
Assuntos
Crista Neural/citologia , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , HumanosRESUMO
Adrenomedullary chromaffin cells are catecholamine (CA)-producing cells originating from trunk neural crest (NC) via sympathoadrenal progenitors (SAPs). We generated NC and SAPs from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in vitro via BMP2/FGF2 exposure, ascertained by qPCR and immunoexpression of SOX10, ASCL1, TFAP2α, and PHOX2B, and by fluorescence-activated cell sorting selection for p75NTR and GD2, and confirmed their trunk-like HOX gene expression. We showed that continuing BMP4 and curtailing FGF2 in vitro, augmented with corticosteroid mimetic, induced these cells to upregulate the chromaffin cell-specific marker PNMT and other CA synthesis and storage markers, and we demonstrated noradrenaline and adrenaline by Faglu and high-performance liquid chromatography. We showed these human cells' SAP-like property of migration and differentiation into cells expressing chromaffin cell markers by implanting them into avian embryos in vivo and in chorio-allantoic membrane grafts. These cells have the potential for investigating differentiation of human chromaffin cells and for modeling diseases involving this cell type.