Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751068

RESUMO

The surface protein overexpressed on cancer cells can be used as biomarkers for early detection of specific diseases. Anti-VCAM-1 and anti-IL4Rα DNA aptamers specific to VCAM-1 and IL4Rα receptors that are overexpressed in 4T1 tumor-bearing mice could be used as potential biomarker for both diagnostic and therapeutic applications in cancer biology. Cell Viability and luciferase assay of 4T1-Luc2 cancer cells in the presence of anti-VCAM-1 ssDNA or anti-IL4Rα RNA aptamers was assessed by monitoring the changes in the absorbance and the fluorescence of Alamar blue dye. The aptamer-conjugated SPIO magnetic beads, used for the selective targeting to tumor sites, were monitored using noninvasive MRI and Bioluminescence imaging (BLI). Cell viability and luciferase assays showed that both anti-VCAM-1 and anti-IL4Rα aptamers favor the depletion of cancer cells and limit tumor progression. Microscopic analyses confirmed that the target specific aptamers significantly trigger tumor cell apoptosis and limit cancer cell growth in vitro. The intravenous injection of SPIO nanoparticle-conjugated aptamers were further confirmed using noninvasive MRI and Bioluminescence imaging. Anti-VCAM1 and anti-IL4Rα aptamers, specific to VCAM-1 and IL4Rα receptors overexpressed in 4T1-Luc2 tumor-bearing mice, were used as diagnostic and therapeutic tools.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Subunidade alfa de Receptor de Interleucina-4/antagonistas & inibidores , Nanopartículas Magnéticas de Óxido de Ferro , Nanomedicina Teranóstica , Molécula 1 de Adesão de Célula Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Aptâmeros de Nucleotídeos/química , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Genes Reporter , Humanos , Medições Luminescentes , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Camundongos , Nanomedicina Teranóstica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biosens Bioelectron ; 101: 282-289, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29096367

RESUMO

Spinal muscular atrophy is an untreatable potentially fatal hereditary disorder caused by loss-of-function mutations in the survival motor neuron (SMN) 1 gene which encodes the SMN protein. Currently, definitive diagnosis relies on the demonstration of biallelic pathogenic variants in SMN1 gene. Therefore, there is an urgent unmet need to accurately quantify SMN protein levels for screening and therapeutic monitoring of symptomatic newborn and SMA patients, respectively. Here, we developed a voltammetric immunosensor for the sensitive detection of SMN protein based on covalently functionalized carbon nanofiber-modified screen printed electrodes. A comparative study of six different carbon nanomaterial-modified electrodes (carbon, graphene (G), graphene oxide (GO), single wall carbon nanotube (SWCNT), multi-wall carbon nanotube (MWCNT), and carbon nanofiber (CNF)) was performed. 4-carboxyphenyl layers were covalently grafted on the six electrodes by electroreduction of diazonium salt. Then, the terminal carboxylic moieties on the electrodes surfaces were utilized to immobilize the SMN antibody via EDC/NHS chemistry and to fabricate the immunosensors. The electrochemical characterization and analytical performance of the six immunosensors suggest that carbon nanofiber is a better electrode material for the SMN immunosensor. The voltammetric SMN carbon nanofiber-based immunosensor showed high sensitivity (detection limit of 0.75pg/ml) and selectivity against other proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and dystrophin (DMD). We suggest that this novel biosensor is superior to other developed assays for SMN detection in terms of lower cost, higher sensitivity, simplicity and capability of high throughput screening.


Assuntos
Técnicas Biossensoriais/instrumentação , Carbono/química , Nanoestruturas/química , Proteína 1 de Sobrevivência do Neurônio Motor/sangue , Anticorpos Imobilizados/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Grafite/química , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Modelos Moleculares , Atrofia Muscular Espinal/sangue , Atrofia Muscular Espinal/diagnóstico , Nanofibras/química , Nanotubos de Carbono/química , Proteína 1 de Sobrevivência do Neurônio Motor/análise
4.
J Nanobiotechnology ; 14(1): 82, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27993139

RESUMO

BACKGROUND: Multifunctional nanocarriers for controlled drug delivery, imaging of disease development and follow-up of treatment efficacy are promising novel tools for disease diagnosis and treatment. In the current investigation, we present a multifunctional theranostic nanocarrier system for anticancer drug delivery and molecular imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) as an MRI contrast agent and busulphan as a model for lipophilic antineoplastic drugs were encapsulated into poly (ethylene glycol)-co-poly (caprolactone) (PEG-PCL) micelles via the emulsion-evaporation method, and PEG-PCL was labelled with VivoTag 680XL fluorochrome for in vivo fluorescence imaging. RESULTS: Busulphan entrapment efficiency was 83% while the drug release showed a sustained pattern over 10 h. SPION loaded-PEG-PCL micelles showed contrast enhancement in T 2 *-weighted MRI with high r 2* relaxivity. In vitro cellular uptake of PEG-PCL micelles labeled with fluorescein in J774A cells was found to be time-dependent. The maximum uptake was observed after 24 h of incubation. The biodistribution of PEG-PCL micelles functionalized with VivoTag 680XL was investigated in Balb/c mice over 48 h using in vivo fluorescence imaging. The results of real-time live imaging were then confirmed by ex vivo organ imaging and histological examination. Generally, PEG-PCL micelles were highly distributed into the lungs during the first 4 h post intravenous administration, then redistributed and accumulated in liver and spleen until 48 h post administration. No pathological impairment was found in the major organs studied. CONCLUSIONS: Thus, with loaded contrast agent and conjugated fluorochrome, PEG-PCL micelles as biodegradable and biocompatible nanocarriers are efficient multimodal imaging agents, offering high drug loading capacity, and sustained drug release. These might offer high treatment efficacy and real-time tracking of the drug delivery system in vivo, which is crucial for designing of an efficient drug delivery system.


Assuntos
Antineoplásicos/farmacocinética , Bussulfano/farmacocinética , Portadores de Fármacos/química , Administração Intravenosa , Animais , Antineoplásicos/química , Bussulfano/química , Bussulfano/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dextranos/química , Células HL-60 , Meia-Vida , Humanos , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/fisiologia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Baço/metabolismo , Baço/patologia , Distribuição Tecidual
5.
Toxicol Ind Health ; 32(5): 809-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-24311626

RESUMO

Copper oxide nanoparticles (CuO NPs) are of great interest in nanoscience and nanotechnology because of their broad industrial and commercial applications. Therefore, toxicity of CuO NPs needs to be thoroughly understood. The aim of this study was to investigate the cytotoxicity, genotoxicity, and oxidative stress induced by CuO NPs in human lung epithelial (A549) cells. CuO NPs were synthesized by solvothermal method and the size of NPs measured under transmission electron microscopy (TEM) was found to be around 23 nm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and lactate dehydrogenase (LDH) assays showed that CuO NPs (5-15 µg/ml) exert cytotoxicity in A549 cells in a dose-dependent manner. Comet assay suggested concentration-dependent induction of DNA damage due to the exposure to CuO NPs. The comet tail moment was 27% at 15 µg/ml of CuO NPs, whereas it was 5% in control (p < 0.05). The flow cytometry data revealed that CuO NPs induced micronuclei (MN) in A549 cells dose dependently. The frequency of MN was 25/10(3) cells at 15 µg/ml of CuO NPs, whereas it was 2/10(3) cells for control. CuO NPs were also found to induce oxidative stress in a concentration-dependent manner, which was indicated by induction of reactive oxygen species (ROS) and lipid peroxidation along with glutathione depletion. Moreover, MN induction and DNA damage were significantly correlated with ROS (R(2) = 0.937 for ROS vs. olive tail moment, and R(2) = 0.944 for ROS vs. MN). Taken together, this study suggested that CuO NPs induce genotoxicity in A549 cells, which is likely to be mediated through ROS generation and oxidative stress.


Assuntos
Cobre/toxicidade , Dano ao DNA , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Ensaio Cometa , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Glutationa/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/citologia , Pulmão/metabolismo , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos
6.
Sensors (Basel) ; 15(6): 14539-68, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26102488

RESUMO

Detection of disease at an early stage is one of the biggest challenges in medicine. Different disciplines of science are working together in this regard. The goal of nanodiagnostics is to provide more accurate tools for earlier diagnosis, to reduce cost and to simplify healthcare delivery of effective and personalized medicine, especially with regard to chronic diseases (e.g., diabetes and cardiovascular diseases) that have high healthcare costs. Up-to-date results suggest that DNA-based nanobiosensors could be used effectively to provide simple, fast, cost-effective, sensitive and specific detection of some genetic, cancer, and infectious diseases. In addition, they could potentially be used as a platform to detect immunodeficiency, and neurological and other diseases. This review examines different types of DNA-based nanobiosensors, the basic principles upon which they are based and their advantages and potential in diagnosis of acute and chronic diseases. We discuss recent trends and applications of new strategies for DNA-based nanobiosensors, and emphasize the challenges in translating basic research to the clinical laboratory.


Assuntos
Técnicas Biossensoriais , DNA/análise , Técnicas de Diagnóstico Molecular , Medicina de Precisão , Humanos
7.
Mar Drugs ; 13(6): 3531-49, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26047482

RESUMO

Four lipid-rich microalgal species from the Red Sea belonging to three different genera (Nannochloris, Picochlorum and Desmochloris), previously isolated as novel biodiesel feedstocks, were bioprospected for high-value, bioactive molecules. Methanol extracts were thus prepared from freeze-dried biomass and screened for different biological activities. Nannochloris sp. SBL1 and Desmochloris sp. SBL3 had the highest radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl, and the best copper and iron chelating activities. All species had potent butyrylcholinesterase inhibitory activity (>50%) and mildly inhibited tyrosinase. Picochlorum sp. SBL2 and Nannochloris sp. SBL4 extracts significantly reduced the viability of tumoral (HepG2 and HeLa) cells with lower toxicity against the non-tumoral murine stromal (S17) cells. Nannochloris sp. SBL1 significantly reduced the viability of Leishmania infantum down to 62% (250 µg/mL). Picochlorum sp. SBL2 had the highest total phenolic content, the major phenolic compounds identified being salicylic, coumaric and gallic acids. Neoxanthin, violaxanthin, zeaxanthin, lutein and ß-carotene were identified in the extracts of all strains, while canthaxanthin was only identified in Picochlorum sp. SBL2. Taken together, these results strongly suggest that the microalgae included in this work could be used as sources of added-value products that could be used to upgrade the final biomass value.


Assuntos
Biomassa , Microalgas/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Butirilcolinesterase/efeitos dos fármacos , Quelantes/isolamento & purificação , Quelantes/farmacologia , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Células HeLa , Células Hep G2 , Humanos , Oceano Índico , Lipídeos/química , Metanol/química , Fenóis/isolamento & purificação , Fenóis/farmacologia
8.
Int J Nanomedicine ; 10: 63-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25565804

RESUMO

Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.


Assuntos
Meios de Contraste/química , Detecção Precoce de Câncer/métodos , Imageamento por Ressonância Magnética , Nanopartículas/química , Neoplasias/diagnóstico , Polímeros/química , Animais , Linhagem Celular Tumoral , Gadolínio/química , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Células-Tronco Mesenquimais , Metacrilatos/química , Camundongos , Micelas
9.
BMC Complement Altern Med ; 13: 168, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23842450

RESUMO

BACKGROUND: Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract. METHODS: Betulinic acid was isolated from methanolic extract by crystallization and chromatography techniques. S.C. methanolic extract was analyzed by UV-Vis spectrophotometry, FTIR, LC-MS, and HPLC. Antiangiogenic effect was studied on rat aortic rings, matrigel tube formation, cell proliferation and migration, and expression of vascular endothelial growth factor (VEGF). Antitumor effect was studied using a subcutaneous tumor model of HCT 116 colorectal carcinoma cells established in nude mice. RESULTS: Analysis by HPLC, LC-MS and FTIR confirm presence of betulinic acid in S.C. methanolic extract. Quantitative analysis by HPLC indicates presence of betulinic acid in S.C. extract at 5.42 ± 0.09% (w/w). Antiangiogenesis study showed potent inhibition of microvessels outgrowth in rat aortic rings, and studies on normal and cancer cells did not show any significant cytotoxic effect. Antiangiogenic effect was further confirmed by inhibition of tube formation on matrigel matrix that involves human endothelial cells (IC50 = 17.6 ± 2.9 µg/ml). S.C. extract also inhibited migration of endothelial cells and suppressed expression of VEGF. In vivo antiangiogenic study showed inhibition of new blood vessels in chicken embryo chorioallantoic membrane (CAM), and in vivo antitumor study showed significant inhibition of tumor growth due to reduction of intratumor blood vessels and induction of cell death. CONCLUSION: Collectively, our results indicate S. campanulatum as antiangiogenic and antitumor candidate, and a new source of betulinic acid.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Inibidores do Crescimento/administração & dosagem , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Syzygium/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Feminino , Inibidores do Crescimento/química , Inibidores do Crescimento/isolamento & purificação , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
BMC Complement Altern Med ; 12: 104, 2012 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-22818000

RESUMO

BACKGROUND: Xanthones are a group of oxygen-containing heterocyclic compounds with remarkable pharmacological effects such as anti-cancer, antioxidant, anti-inflammatory, and antimicrobial activities. METHODS: A xanthones extract (81% α-mangostin and 16% γ-mangostin), was prepared by crystallization of a toluene extract of G. mangostana fruit rinds and was analyzed by LC-MS. Anti-colon cancer effect was investigated on HCT 116 human colorectal carcinoma cells including cytotoxicity, apoptosis, anti-tumorigenicity, and effect on cell signalling pathways. The in vivo anti-colon cancer activity was also investigated on subcutaneous tumors established in nude mice. RESULTS: The extract showed potent cytotoxicity (median inhibitory concentration 6.5 ± 1.0 µg/ml), due to induction of the mitochondrial pathway of apoptosis. Three key steps in tumor metastasis including the cell migration, cell invasion and clonogenicity, were also inhibited. The extract and α-mangostin up-regulate the MAPK/ERK, c-Myc/Max, and p53 cell signalling pathways. The xanthones extract, when fed to nude mice, caused significant growth inhibition of the subcutaneous tumor of HCT 116 colorectal carcinoma cells. CONCLUSIONS: Our data suggest new mechanisms of action of α-mangostin and the G. mangostana xanthones, and suggest the xanthones extract of as a potential anti-colon cancer candidate.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Garcinia mangostana/química , Extratos Vegetais/administração & dosagem , Xantonas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/fisiopatologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos
11.
Rev. bras. farmacogn ; 22(2): 335-343, Mar.-Apr. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-624648

RESUMO

Syzygium aromaticum (L.) Merr. & L.M. Perry, Myrtaceae, is an evergreen tree with anticarcinogenic, antimutagenic, aphrodisiac, antimicrobial, antioxidant and antiinflammatory properties. This study aims to investigate the anti-breast cancer effect of extracts from leaves, stem and bark of S. aromaticum and to develop a method for preparation of betulinic acid fraction from the leaves. Betulinic acid, ursolic acid and oleanolic acid contents of the extracts were determined by HPLC. A betulinic acid fraction was prepared by simple crystallization of leaves extract and was characterized by HPLC and mass analysis. Anti-breast cancer effects were studied on MCF-7 and MDA-MB-231 cells. The extracts were found to contain high levels of betulinic acid particularly the leaves extract which contained 17% wt/wt. The betulinic acid fraction contains 75% betulinic acid. Cytotoxicity testing reveals high and selective cytotoxic effect of the stem extract on MCF-7 cells with IC50 33±1.6 µg/mL. Cytotoxic effect of the stem extract was due to activation of apoptotic machinery of cell death. Combination studies of stem extract with tamoxifen reveals antagonistic effect at high concentration of tamoxifen and enhancement effect at low concentration. The selective cytotoxicity of the stem extract of S. aromaticum on MCF-7 is not due to betulinic acid but due to other constituents yet to be discovered.

12.
Molecules ; 17(3): 2939-54, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22402764

RESUMO

Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Triterpenos/farmacologia , Xantonas/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cisplatino/antagonistas & inibidores , Neoplasias Colorretais , Citoproteção , Sinergismo Farmacológico , Células HCT116 , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Triterpenos Pentacíclicos , Transdução de Sinais/efeitos dos fármacos , Ácido Betulínico
13.
J Pharm Sci ; 101(2): 815-25, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22081501

RESUMO

α-Mangostin is an oxygenated heterocyclic xanthone with remarkable pharmacological properties, but poor aqueous solubility and low oral bioavailability hinder its therapeutic application. This study sought to improve the compound's solubility and study the mechanism underlying solubility enhancement. Solid dispersions of α-mangostin were prepared in polyvinylpyrrolidone (PVP) by solvent evaporation method and showed substantial enhancement of α-mangostin's solubility from 0.2 ± 0.2 µg/mL to 2743 ± 11 µg/mL. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated interaction between α-mangostin and PVP. Transmission electron microscopy and dynamic light scattering showed self-assembly of round anionic nanomicelles with particle size in the range 99-127 nm. Powder X-ray diffraction indicated conversion of α-mangostin from crystalline into amorphous state, and scanning electron microscopy showed the presence of highly porous powder. Studies using the fluorescent probe pyrene showed that the critical micellar concentration is about 77.4 ± 4 µg/mL. Cellular uptake of nanomicelles was found to be mediated via endocytosis and indicated intracellular delivery of α-mangostin associated with potent cytotoxicity (median inhibitory concentration of 8.9 ± 0.2 µg/mL). Improved solubility, self-assembly of nanomicelles, and intracellular delivery through endocytosis may enhance the pharmacological properties of α-mangostin, particularly antitumor efficacy.


Assuntos
Micelas , Nanoestruturas , Água/química , Xantonas/química , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Pak J Pharm Sci ; 25(1): 7-14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186303

RESUMO

Parkia speciosa Hassk is a traditional medicinal plant with strong antioxidant and hypoglycemic properties. This study aims to investigate the total phenolic content, antioxidant, cytotoxic and antiangiogenic effect of eight extracts from P. speciosa empty pods. The extracts were found to contain high levels of total phenols and demonstrated strong antioxidant effect in DPPH scavenging test. In rat aortic rings, P. speciosa extracts significantly inhibited the microvessel outgrowth from aortic tissue explants by more than 50%. The antiangiogenic activity was further confirmed by tube formation on matrigel matrix involving human endothelial cells. Cytotoxic effect was evaluated by XTT test on endothelial cells as a model of angiogenesis versus a panel of human cancer and normal cell lines. Basically the extracts did not show acute cytotoxicity. Morphology examination of endothelial cells indicated induction of autophagy characterized by formation of plenty of cytoplasmic vacuoles. The extracts were found to work by decreasing expression of vascular endothelial growth factor in endothelial cells.


Assuntos
Inibidores da Angiogênese/farmacologia , Antioxidantes/farmacologia , Fabaceae/química , Animais , Aorta/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Sequestradores de Radicais Livres/farmacologia , Humanos , Masculino , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Oncol Rep ; 27(3): 727-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22134768

RESUMO

Deregulated cell signaling pathways result in cancer development. More than one signal transduction pathway is involved in colorectal cancer pathogenesis and progression. Koetjapic acid (KA) is a naturally occurring seco-A-ring oleanene triterpene isolated from the Sandoricum koetjape stem bark. We report the cellular and molecular mechanisms of anticancer activity of KA towards human colorectal cancer. The results showed that KA induces apoptosis in HCT 116 colorectal carcinoma cells by inducing the activation of extrinsic and intrinsic caspases. We confirmed that KA-induced apoptosis was mediated by DNA fragmentation, nuclear condensation and disruption in the mitochondrial membrane potential. Further studies on the effect of KA on cancer pathways show that the compound causes down-regulation of Wnt, HIF-1α, MAP/ERK/JNK and Myc/Max signaling pathways and up-regulates the NF-κB signaling pathway. The result of this study highlights the anticancer potential of KA against colorectal cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Meliaceae/química , Triterpenos/farmacologia , Apoptose/genética , Caspases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Fragmentação do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
Rev. bras. farmacogn ; 21(6): 1025-1034, Nov.-Dec. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-602300

RESUMO

This study aimed to investigate the antitumorigenicity of xanthones-rich extract from Garcinia mangostana L., Clusiaceae, fruit rinds which was obtained by a simple recrystallization of 75 percent ethanolic extract. α-Mangostin content of the extract was determined qualitatively by TLC and quantitatively by HPLC, and total xanthones content was quantified by UV spectrophotometry. The extract was evaluated for cytotoxicity, apoptosis and antitumorigenicity on HCT 116 human colorectal carcinoma cells. α-Mangostin was found to be the main constituent of the extract which was 71.2±0.1 percent, and the total xanthones content was 95±4.8 percent (wt/wt). The extract showed potent dose dependent cytotoxicity with IC50 value 9.2 μg/mL. Apoptosis studies revealed activation of caspases 3 and 7, DNA fragmentation, chromatin condensation and loss of mitochondrial membrane potential. Studies on cell migration and colony formation indicate reduced cell migration ability and clonogenicity of treated HCT 116 cells at sub-inhibitory concentrations. Taken together, the cytotoxic effect of the xanthones extract is mediated through the mitochondrial pathway of apoptosis. The reduced cell migration and clonogenicity of HCT 116 cells might prevent both primary and metastatic tumor growth in vivo which will be the topic of our future work using the metastatic orthotopic colon cancer model.

17.
Cancer Cell Int ; 11(1): 12, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21524294

RESUMO

BACKGROUND: Angiogenesis, the formation of new blood vessels, has become an important target in cancer therapy. Angiogenesis plays an important role in tumor growth and metastasis. Koetjapic acid (KA) is a seco-A-ring oleanene triterpene isolated from S. koetjape. The solvent extract of this plant species was shown previously to have strong antiangiogenic activity; however the active ingredient(s) that conferred the biological activity and the mode of action was not established. Given the high concentration of KA in S. koetjape, an attempt has been made in this study to investigate the antiangiogenic properties of KA. RESULTS: Treatment with 10-50 µg/ml KA resulted in dose dependent inhibition of new blood vessels growth in ex vivo rat aortic ring assay. KA was found to be non-cytotoxic against HUVECs with IC50 40.97 ± 0.37 µg/ml. KA inhibited major angiogenesis process steps, endothelial cell migration and differentiation as well as VEGF expression. CONCLUSIONS: The non-cytotoxic compound, KA, may be a potent antiangiogenic agent; its activity may be attributed to inhibition of endothelial cells migration and differentiation as well VEGF suppression.

18.
Int J Biochem Cell Biol ; 37(4): 835-41, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15694842

RESUMO

A study has been carried out into the effects of procaine on the activities (Na+,K+)- and (Ca2+,Mg2+)-ATPases of the human erythrocyte membrane. In general, procaine inhibited both types of ATPases activities but with characteristic inhibition profiles and varying degrees of efficacy. In addition, the effects of procaine on the transport of K+ and phosphate ions across the membrane of the human erythrocyte were monitored and compared. Procaine was found to stimulate K+ release and to inhibit phosphate uptake. At low concentrations, both processes were found to be concentration dependent. Stimulation of K+ release and inhibition of phosphate uptake reached plateaus at concentrations of 50 and 150 mM, respectively. The antisickling effect of procaine was explained mainly in the light of the changes it induces in the activities of membrane bound ATPases and the permeability properties of the erythrocyte membrane to cations and anions.


Assuntos
Anemia Falciforme/tratamento farmacológico , ATPase de Ca(2+) e Mg(2+)/antagonistas & inibidores , Membrana Eritrocítica/efeitos dos fármacos , Procaína/uso terapêutico , Ativação Enzimática , Membrana Eritrocítica/enzimologia , Humanos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA