Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142702, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936486

RESUMO

This study presents a comprehensive investigation into NiXCo1-xFe2O4 (x = 0.5) spinel nanoparticles synthesized through a one-pot hydrothermal method using Co(NO3)2.6H2O and Ni(NO3)2.6H2O salts. XRD, FTIR, FESEM, and VSM analyses confirmed a cubic structure of NiXCo1-xFe2O4 (x = 0.5) nanoparticles without impurities. These nanoparticles exhibit efficient Zn (II) adsorption characteristics, following Langmuir isotherm and pseudo-second-order kinetics. The maximum adsorption capacity was measured to be 666.67 mg g-1 at pH = 7, with mechanisms involving both electrostatic attraction and cation exchange. Desorption studies indicate more than 75% Zn (II) recovery in an acidic environment (pH = 2) after three cycles. Computational analysis was used to validate the experimental results through Molecular Dynamics simulations, initially focusing on NiXCo1-xFe2O4 (x = 0.5). Further exploration involved variations in x at 0.25 and 0.75 to identify the optimal Ni and Co ratio in this bivalent cation spinel ferrite. Computational analyses reveal the superior performance of NiXCo1-xFe2O4 (x = 0.75) in Zn (II) removal, supported by radial distribution analysis, VdW energy, Coulombic energy, mean square displacement (MSD), root mean square displacement (RMSD), and interaction energy. This comprehensive study provides valuable insights into the adsorption behavior and structural stability of NiXCo1-xFe2O4 nanoparticles, showcasing potential applications in Zn (II) removal.

2.
Langmuir ; 39(39): 13953-13967, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37729118

RESUMO

MXene is an incredibly promising two-dimensional material with immense potential to serve as a high-performing separating or barrier layer to develop advanced membranes. Despite the significant progress made in MXene membranes, two major challenges still exist: (i) effectively stacking MXene nanosheets into defect-free membranes and (ii) the high fouling tendency of MXene-based membranes. To address these issues, we employed sulfonated polydopamine (SPD), which simultaneously serves as a binding agent to promote the compact assembling of Ti3C2Tx MXenes (MX) nanosheets and improves the antifouling properties of the resulting sulfonated polydopamine-functionalized MX (SPDMX) membranes. The SPDMX membrane was tested for challenging surfactant-stabilized oil-in-water separation with an impressive efficiency of 98%. Moreover, an ultrahigh permeability of 1620 LMH/bar was also achieved. The sulfonation of PD helps in improving the antifouling characteristics of SPDMX by developing a strong hydration layer and enhancing the oleophobicity of the membrane. The underwater SPDMX membrane appeared superoleophobic with an oil contact angle of 153°, whereas the ceramic membrane exhibited an oil contact angle of 137°. The SPDMX membranes showed an improved flux recovery (31%) compared to the nonsulfonated counterpart. This work highlights the appropriate functionalization of MXene as a promising approach to developing MXene membranes with high permeation flux and better antifouling characteristics for oily wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA