Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 134: 155965, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214015

RESUMO

BACKGROUND: Allergic asthma has been regarded as an inflammatory disease mediated by type 2 immunity. The treatment of progressive forms of asthma remains unsatisfactory despite substantial progress in drug development. Lentinan (LTN), a specific polysaccharide derived from Lentinus edodes, exhibits anti-inflammatory and immunomodulatory functions. Nevertheless, the effect and underlying mechanisms of Lentinan on asthma remain unclear. PURPOSE: This research investigated the regulatory role of Lentinan on allergic airway inflammation and epithelial barrier dysfunction in HDM (house dust mite)-induced asthma. STUDY DESIGN: HDM-induced C57BL/6 mice received different dosages of Lentinan through intraperitoneal injections, to observe the effect of Lentinan against allergic airway inflammation and epithelial barrier dysfunction in asthma. METHODS: Mice were intranasally administered HDM extract solution on days 0, 1, 2 and on days 8 to 12, establishing the allergic asthma model. On days 8 to 12, mice were intraperitoneally administered varying doses of Lentinan (5/10/20mg/kg) 1h before HDM challenge. On day 14, samples were harvested for analysis. Cell counting, flow cytometry, ELISA, HE and PAS staining, IF staining, western blotting, RT-PCR, and bioinformatic analysis were conducted to delve into the underlying functions and mechanisms of Lentinan in asthma. RESULTS: Our study revealed that the treatment of Lentinan significantly ameliorated allergic airway inflammation and improved epithelial barrier dysfunction in experimental mice. Following Lentinan treatment, there was a significant reduction in eosinophil counts, accompanied by a diminished presence of type 2 cytokines. Reversal of epithelial barrier dysfunction after treatment was also observed. The therapeutic mechanism involved suppression of the PI3K/AKT/ NF-κB pathway. CONCLUSION: Our research illuminated the protective role of Lentinan in allergic airway inflammation and impaired epithelial barrier, suggesting LTN could be an innovative and promising candidate for asthma treatment.


Assuntos
Asma , Lentinano , Camundongos Endogâmicos C57BL , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Lentinano/farmacologia , Animais , Asma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Pyroglyphidae , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Pulmão/efeitos dos fármacos , Feminino , Cogumelos Shiitake/química , Citocinas/metabolismo , Masculino
2.
Respir Res ; 25(1): 57, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267973

RESUMO

BACKGROUND: Lymphangioleiomyomatosis (LAM) is a rare disease which is easily misdiagnosed. Vascular endothelial growth factor D (VEGF-D), as the most common biomarker, however, is not so perfect for the diagnosis and severity assessment of LAM. MATERIALS AND METHODS: The isobaric tags for relative and absolute quantitation (iTRAQ)-based method was used to identify a cytoskeleton protein, moesin. 84 patients with LAM, 44 patients with other cystic lung diseases (OCLDs), and 37 healthy control subjects were recruited for collecting blood samples and clinical data. The levels of moesin in serum were evaluated by ELISA. The relationships of moesin with lymphatic involvement, lung function, and treatment decision were explored in patients with LAM. RESULTS: The candidate protein moesin was identified by the proteomics-based bioinformatic analysis. The serum levels of moesin were higher in patients with LAM [219.0 (118.7-260.5) pg/mL] than in patients with OCLDs (125.8 ± 59.9 pg/mL, P < 0.0001) and healthy women [49.6 (35.5-78.9) ng/mL, P < 0.0001]. Moesin had an area under the receiver operator characteristic curve (AUC) of 0.929 for predicting LAM diagnosis compared to healthy women (sensitivity 81.0%, specificity 94.6%). The combination of moesin and VEGF-D made a better prediction in differentiating LAM from OCLDs than moesin or VEGF-D alone. Moreover, elevated levels of moesin were related to lymphatic involvement in patients with LAM. Moesin was found negatively correlated with FEV1%pred, FEV1/FVC, and DLCO%pred (P = 0.0181, r = - 0.3398; P = 0.0067, r = - 0.3863; P = 0.0010, r = - 0.4744). A composite score combining moesin and VEGF-D improved prediction for sirolimus treatment, compared with each biomarker alone. CONCLUSION: Higher levels of moesin in serum may indicate impaired lung function and lymphatic involvement in patients with LAM, suggest a more serious condition, and provide clinical guidance for sirolimus treatment.


Assuntos
Linfangioleiomiomatose , Proteínas dos Microfilamentos , Humanos , Feminino , Linfangioleiomiomatose/diagnóstico , Fator D de Crescimento do Endotélio Vascular , Biomarcadores , Sirolimo
3.
Cell Signal ; 113: 110964, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956773

RESUMO

BACKGROUND: The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD: House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS: Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION: Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.


Assuntos
Asma , NF-kappa B , Animais , Humanos , Camundongos , Asma/tratamento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fator 10 de Crescimento de Fibroblastos/farmacologia , Fator 10 de Crescimento de Fibroblastos/uso terapêutico , Fator 10 de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA