RESUMO
The dynamic intercommunication between tumour cells and cells from the microenvironment, such as cancer-associated fibroblast (CAFs), is a key factor driving breast cancer (BC) metastasis. Clusters of circulating tumour cells (CTCs), known to bare a higher efficiency at establishing metastases, are found in the blood of BC patients, often accompanied by CAFs in heterotypic CTC-clusters. Previously we have shown the utility of CTC-clusters models and the zebrafish embryo as a model of metastasis to understand the biology of breast cancer CTC-clusters. In this work, we use the zebrafish embryo to study the interactions between CTCs in homotypic clusters and CTC-CAFs in heterotypic CTC-clusters to identify potential pro-metastatic traits derived from CTC-CAF communication. We found that upon dissemination CAFs seem to exert a pro-survival and pro-proliferative effect on the CTCs, but only when CTCs and CAFs remain joined as cell clusters. Our data indicate that the clustering of CTC and CAF allows the establishment of physical interactions that when maintained over time favour the selection of CTCs with a higher capacity to survive and proliferate upon dissemination. Importantly, this effect seems to be dependent on the survival of disseminated CAFs and was not observed in the presence of normal fibroblasts. Moreover, we show that CAFs can exert regulatory effects on the CTCs without being involved in promoting tumour cell invasion. Lastly, we show that the physical communication between BC cells and CAFs leads to the production of soluble factors involved in BC cell survival and proliferation. These findings suggest the existence of a CAF-regulatory effect on CTC survival and proliferation sustained by cell-to-cell contacts and highlight the need to understand the molecular mechanisms that mediate the interaction between the CTCs and CAFs in clusters enhancing the metastatic capacity of CTCs.
RESUMO
Metastasis is the primary cause of death for most breast cancer (BC) patients who succumb to the disease. During the hematogenous dissemination, circulating tumor cells interact with different blood components. Thus, there are microenvironmental and systemic processes contributing to cancer regulation. We have recently published that red blood cells (RBCs) that accompany circulating tumor cells have prognostic value in metastatic BC patients. RBC alterations are related to several diseases. Although the principal known role is gas transport, it has been recently assigned additional functions as regulatory cells on circulation. Hence, to explore their potential contribution to tumor progression, we characterized the proteomic composition of RBCs from 53 BC patients from stages I to III and IV, compared with 33 cancer-free controls. In this work, we observed that RBCs from BC patients showed a different proteomic profile compared to cancer-free controls and between different tumor stages. The differential proteins were mainly related to extracellular components, proteasome, and metabolism. Embryonic hemoglobins, not expected in adults' RBCs, were detected in BC patients. Besides, lysosome-associated membrane glycoprotein 2 emerge as a new RBCs marker with diagnostic and prognostic potential for metastatic BC patients. Seemingly, RBCs are acquiring modifications in their proteomic composition that probably represents the systemic cancer disease, conditioned by the tumor microenvironment.
Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Adulto , Humanos , Feminino , Neoplasias da Mama/metabolismo , Células Neoplásicas Circulantes/metabolismo , Proteômica , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Biomarcadores Tumorais/metabolismo , Microambiente TumoralRESUMO
Breast cancers of the luminal B subtype are frequent tumors with high proliferation and poor prognosis. Epigenetic alterations have been found in breast tumors and in biological fluids. We aimed to profile the cell-free DNA (cfDNA) methylome of metastatic luminal B breast cancer (LBBC) patients using an epigenomic approach to discover potential noninvasive biomarkers. Plasma cfDNA was analyzed using the Infinium MethylationEpic array in a cohort of 14 women, including metastatic LBBC patients and nontumor controls. The methylation levels of cfDNA and tissue samples were validated with droplet digital PCR. The methylation and gene expression data of 582 primary luminal breast tumors and 79 nontumor tissues were obtained from The Cancer Genome Atlas (TCGA). We found an episignature of 1,467 differentially methylated CpGs that clearly identified patients with LBBC. Among the genes identified, the promoter hypermethylation of WNT1 was validated in cfDNA, showing an area under the ROC curve (AUC) of 0.86 for the noninvasive detection of metastatic LBBC. Both paired cfDNA and primary/metastatic breast tumor samples showed hypermethylation of WNT1. TCGA analysis revealed significant WNT1 hypermethylation in the primary tumors of luminal breast cancer patients, with a negative association between WNT1 methylation and gene expression. In this proof-of-principle study, we discovered an episignature associated with metastatic LBBC using a genome-wide cfDNA methylation approach. We also identified the promoter hypermethylation of WNT1 in cfDNA as a potential noninvasive biomarker for luminal breast cancer. Our results support the use of EPIC arrays to identify new epigenetic noninvasive biomarkers in breast cancer.
RESUMO
BACKGROUND: Cancer metastasis is a deathly process, and a better understanding of the different steps is needed. The shedding of circulating tumor cells (CTCs) and CTC-cluster from the primary tumor, its survival in circulation, and homing are key events of the metastasis cascade. In vitro models of CTCs and in vivo models of metastasis represent an excellent opportunity to delve into the behavior of metastatic cells, to gain understanding on how secondary tumors appear. METHODS: Using the zebrafish embryo, in combination with the mouse and in vitro assays, as an in vivo model of the spatiotemporal development of metastases, we study the metastatic competency of breast cancer CTCs and CTC-clusters and the molecular mechanisms. RESULTS: CTC-clusters disseminated at a lower frequency than single CTCs in the zebrafish and showed a reduced capacity to invade. A temporal follow-up of the behavior of disseminated CTCs showed a higher survival and proliferation capacity of CTC-clusters, supported by their increased resistance to fluid shear stress. These data were corroborated in mouse studies. In addition, a differential gene signature was observed, with CTC-clusters upregulating cell cycle and stemness related genes. CONCLUSIONS: The zebrafish embryo is a valuable model system to understand the biology of breast cancer CTCs and CTC-clusters.
Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Células Neoplásicas Circulantes , Peixe-Zebra/embriologia , Animais , Linhagem Celular Tumoral , Embrião não Mamífero , Feminino , Humanos , Células MCF-7 , Camundongos , Metástase NeoplásicaRESUMO
BACKGROUND: Circulating tumor cells (CTC) have relevance as prognostic markers in breast cancer. However, the functional properties of CTCs or their molecular characterization have not been well-studied. Experimental models indicate that only a few cells can survive in the circulation and eventually metastasize. Thus, it is essential to identify these surviving cells capable of forming such metastases. METHODS: We isolated viable CTCs from 50 peripheral blood samples obtained from 35 patients with advanced metastatic breast cancer using RosetteSepTM for ex vivo culture. The CTCs were seeded and monitored on plates under low adherence conditions and with media supplemented with growth factors and Nanoemulsions. Phenotypic analysis was performed by immunofluorescence and gene expression analysis using RT-PCR and CTCs counting by the Cellsearch® system. RESULTS: We found that in 75% of samples the CTC cultures lasted more than 23 days, predicting a shorter Progression-Free Survival in these patients, independently of having ≥5 CTC by Cellsearch®. We also observed that CTCs before and after culture showed a different gene expression profile. CONCLUSIONS: the cultivability of CTCs is a predictive factor. Furthermore, the subset of cells capable of growing ex vivo show stem or mesenchymal features and may represent the CTC population with metastatic potential in vivo.
RESUMO
CTCs have extensively been used for the monitoring and characterization of metastatic prostate cancer, but their application in the clinic is still very scarce. Besides, the resistance mechanisms linked to prostate cancer treatment remain unclear. Liquid biopsies represent the most promising alternative due to the complexity of biopsying bone metastasis and the duration of the disease. We performed a prospective longitudinal study in CTCs from 20 castration-resistant prostate cancer patients treated with docetaxel. For that, we used CellSearch® technology and a custom gene expression panel with qRT-PCR using a CTCs negative enrichment approach. We found that CTCs showed a hybrid phenotype during the disease, where epithelial features were associated with the presence of ≥ 5 CTCs/7.5 mL of blood, while high relative expression of the gene MYCL was observed preferentially in the set of samples with < 5 CTCs/7.5 mL of blood. At baseline, patients whose CTCs had stem or hybrid features showed a later progression. After 1 cycle of docetaxel, high relative expression of ZEB1 indicated worse outcome, while KRT19 and KLK3 high expression could predisposed the patients to a worse prognosis at clinical progression. In the present work we describe biomarkers with clinical relevance for the prediction of early response or resistance in castration-resistant prostate cancer patients. Besides, we question the utility of targeted isolated CTCs and the use of a limited number of markers to define the CTCs population.
Assuntos
Docetaxel/uso terapêutico , Células Neoplásicas Circulantes/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Transição Epitelial-Mesenquimal , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genéticaRESUMO
Circulating tumor cell (CTC) enumeration has emerged as a powerful biomarker for the assessment of prognosis and the response to treatment in metastatic breast cancer (MBC). Moreover, clinical evidences show that CTC-cluster counts add prognostic information to CTC enumeration, however, their significance is not well understood, and more clinical evidences are needed. We aim to evaluate the prognostic value of longitudinally collected single CTCs and CTC-clusters in a heterogeneous real-world cohort of 54 MBC patients. Blood samples were longitudinally collected at baseline and follow up. CTC and CTC-cluster enumeration was performed using the CellSearch® system. Associations with progression-free survival (PFS) and overall survival (OS) were evaluated using Cox proportional hazards modelling. Elevated CTC counts and CTC-clusters at baseline were significantly associated with a shorter survival time. In joint analysis, patients with high CTC counts and CTC-cluster at baseline were at a higher risk of progression and death, and longitudinal analysis showed that patients with CTC-clusters had significantly shorter survival compared to patients without clusters. Moreover, patients with CTC-cluster of a larger size were at a higher risk of death. A longitudinal analysis of a real-world cohort of MBC patients indicates that CTC-clusters analysis provides additional prognostic value to single CTC enumeration, and that CTC-cluster size correlates with patient outcome.
RESUMO
The study of circulating tumor cells (CTCs) has a huge clinical interest in advance and metastatic breast cancer patients. However, many approaches are biased by the use of epithelial markers, which underestimate non-epithelial CTCs phenotypes. CTCs enumeration provides valuable prognostic information; however, molecular characterization could be the best option to monitor patients throughout the disease since it may provide more relevant clinical information to the physicians. In this work, we aimed at enumerating and performing a molecular characterization of CTCs from a cohort of 20 patients with metastatic breast cancer (MBC), monitoring the disease at different time points of the therapy, and at progression when it occurred. To this end, we used a CTC negative enrichment protocol that allowed us to recover a higher variety of CTCs phenotypes. With this strategy, we were able to obtain gene expression data from CTCs from all the patients. In addition, we found that high expression levels of PALB2 and MYC were associated with a worse outcome. Interestingly, we identified that CTCs with an EpCAMhighVIMlowALDH1A1high signature showed both shorter overall survival (OS) and progression-free survival (PFS), suggesting that CTCs with epithelial-stem features had the most aggressive phenotype.