Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Breast Cancer Res Treat ; 204(2): 407-414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153569

RESUMO

PURPOSE: The PIK3R1 gene encodes the regulatory subunit-p85a-of the PI3K signaling complex. Prior studies have found that pathogenic somatic alterations in PIK3R1 are enriched in human breast cancers but the genomic landscape of breast cancer patients harboring PIK3R1 mutations has not been extensively characterized. METHODS: We retrospectively analyzed 6,009 patient records that underwent next-generation sequencing (NGS) using the Tempus xT solid tumor assay. All patients had breast cancer with known HER2 (+/-) and hormone receptor (HR; +/-) status and were classified according to the presence of PIK3R1 mutations including short variants and copy number alterations. RESULTS: The frequency of PIK3R1 mutations varied according to subtype: 6% in triple negative (TNBC, 89/1,475), 2% in HER2-/HR+ (80/3,893) and 2.3% in HER2+ (15/641) (p < 0.001). Co-mutations in PTEN, TP53 and NF1 were significantly enriched, co-mutations in PIK3CA were significantly less prevalent, and tumor mutational burden was significantly higher in PIK3R1-mutated HER2- samples relative to PIK3R1 wild-type. At the transcriptional-level, PIK3R1 RNA expression in HER2- disease was significantly higher in PIK3R1-mutated (excluding copy number loss) samples, regardless of subtype. CONCLUSION: This is the largest investigation of the PIK3R1 mutational landscape in breast cancer patients (n = 6,009). PIK3R1 mutations were more common in triple-negative breast cancer (~ 6%) than in HER2 + or HER2-/HR + disease (approximately 2%). While alterations in the PI3K/AKT pathway are often actionable in HER2-/HR + breast cancer, our study suggests that PIK3R1 could be an important target in TNBC as well.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/patologia , Estudos Retrospectivos , Fosfatidilinositol 3-Quinases/genética , Mutação , Fatores de Transcrição/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Genômica , Classe Ia de Fosfatidilinositol 3-Quinase/genética
2.
Clin Cancer Res ; 27(8): 2126-2129, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188141

RESUMO

On June 29, 2020, the FDA approved pertuzumab, trastuzumab, and hyaluronidase-zzxf subcutaneous injection (Phesgo) for the treatment of patients with HER2-positive early-stage and metastatic breast cancer. Patients should be selected for therapy based on an FDA-approved companion diagnostic test. Approval was primarily based on the FeDeriCa trial, a randomized, open-label, multicenter comparability study of pertuzumab, trastuzumab, and hyaluronidase-zzxf subcutaneous injection compared with intravenous pertuzumab and intravenous trastuzumab administered in the neoadjuvant and adjuvant settings with chemotherapy for the treatment of patients with early breast cancer. The pharmacokinetic endpoints were, first, to demonstrate that the exposure of subcutaneous pertuzumab was not inferior to that of intravenous pertuzumab, and then to demonstrate that the exposure of subcutaneous trastuzumab was not inferior to that of intravenous trastuzumab. The primary endpoints were met with the observed lower limit of the two-sided 90% confidence intervals above the prespecified noninferiority margins. The most common adverse reactions were alopecia, nausea, diarrhea, anemia, and asthenia. The totality of the evidence demonstrated comparability of the subcutaneous product to intravenous, allowing for extrapolation and approval of all breast cancer indications for which intravenous trastuzumab and pertuzumab are approved.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/terapia , Terapia Neoadjuvante/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/patologia , Quimioterapia Adjuvante/efeitos adversos , Quimioterapia Adjuvante/métodos , Esquema de Medicação , Aprovação de Drogas , Feminino , Humanos , Hialuronoglucosaminidase/administração & dosagem , Hialuronoglucosaminidase/efeitos adversos , Injeções Subcutâneas , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Terapia Neoadjuvante/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Trastuzumab/administração & dosagem , Trastuzumab/efeitos adversos , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration
3.
PLoS One ; 15(6): e0234146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32525891

RESUMO

Approximately 20% of breast cancers are HER2-positive. Trastuzumab has improved patient outcomes significantly for these cancers. However, acquired resistance remains a major hurdle in the clinical management of these patients. Therefore, identifying molecular changes that cause trastuzumab resistance is worthwhile. STAT6 is a transcription factor that regulates a variety of genes involved in cell cycle regulation, growth inhibition, and apoptosis. STAT6 expression is lost in approximately 3% of breast cancers, but little work has been done in the context of trastuzumab resistance in breast cancer. In isogenic cell line pairs, we observed that trastuzumab-resistant cells expressed significantly lower levels of STAT6 compared to trastuzumab-sensitive cells. Therefore, in order to study the consequences of STAT6 loss in HER2+ breast cancer, we knocked out both alleles of the STAT6 gene using somatic cell gene targeting. Interestingly, loss of STAT6 resulted in anchorage-independent growth and changes in several genes involved in epithelial to mesenchymal transition. This study suggests that STAT6 may play a role in the pathophysiology of HER2+ human breast cancer.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Fator de Transcrição STAT6/genética , Trastuzumab/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Guia de Cinetoplastídeos/metabolismo , Receptor ErbB-2/genética , Fator de Transcrição STAT6/deficiência
4.
PLoS One ; 15(5): e0227522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374759

RESUMO

Expression of the voltage gated proton channel (Hv1) as identified by immunocytochemistry has been reported previously in breast cancer tissue. Increased expression of HV1 was correlated with poor prognosis and decreased overall and disease-free survival but the mechanism of its involvement in the disease is unknown. Here we present electrophysiological recordings of HV1 channel activity, confirming its presence and function in the plasma membrane of a breast cancer cell line, MDA-MB-231. With western blotting we identify significant levels of HV1 expression in 3 out of 8 "triple negative" breast cancer cell lines (estrogen, progesterone, and HER2 receptor expression negative). We examine the function of HV1 in breast cancer using MDA-MB-231 cells as a model by suppressing the expression of HV1 using shRNA (knock-down; KD) and by eliminating HV1 using CRISPR/Cas9 gene editing (knock-out; KO). Surprisingly, these two approaches produced incongruous effects. Knock-down of HV1 using shRNA resulted in slower cell migration in a scratch assay and a significant reduction in H2O2 release. In contrast, HV1 Knock-out cells did not show reduced migration or H2O2 release. HV1 KO but not KD cells showed an increased glycolytic rate accompanied by an increase in p-AKT (phospho-AKT, Ser473) activity. The expression of CD171/LCAM-1, an adhesion molecule and prognostic indicator for breast cancer, was reduced in HV1 KO cells. When we compared MDA-MB-231 xenograft growth rates in immunocompromised mice, tumors from HV1 KO cells grew less than WT in mass, with lower staining for the Ki-67 marker for cell proliferation rate. Therefore, deletion of HV1 expression in MDA-MB-231 cells limits tumor growth rate. The limited growth thus appears to be independent of oxidant production by NADPH oxidase molecules and to be mediated by cell adhesion molecules. Although HV1 KO and KD affect certain cellular mechanisms differently, both implicate HV1-mediated pathways for control of tumor growth in the MDA-MB-231 cell line.


Assuntos
Proliferação de Células/genética , Canais Iônicos/genética , Proteínas de Membrana/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Sistemas CRISPR-Cas/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Peróxido de Hidrogênio/farmacologia , Imuno-Histoquímica , Camundongos , NADPH Oxidases/genética , RNA Interferente Pequeno/genética , Neoplasias de Mama Triplo Negativas/patologia
5.
Breast Cancer Res Treat ; 177(2): 325-333, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31209687

RESUMO

PURPOSE: The PI3K pathway, which includes the PI3K catalytic subunits p110α (PIK3CA) and the PI3K regulatory subunit p85α (PIK3R1), is the most frequently altered pathway in cancer. We encountered a breast cancer patient whose tumor contained a somatic alteration in PIK3R1. Some commercial sequencing platforms suggest that somatic mutations in PIK3R1 may sensitize cancers to drugs that inhibit the mammalian target of rapamycin (mTOR). However, a review of the preclinical and clinical literature did not find evidence substantiating that hypothesis. The purpose of this study was to knock out PIK3R1 in order to determine the optimal therapeutic approach for breast cancers lacking p85α. METHODS: We created an isogenic cellular system by knocking out both alleles of the PIK3R1 gene in the non-tumorigenic human breast cell line MCF-10A. Knockout cells were compared with wild-type cells by measuring growth, cellular signaling, and response to drugs. RESULTS: We observed hyperphosphorylation of MEK in these knockouts, which sensitized PIK3R1-null cells to a MEK inhibitor, trametinib. However, they were not sensitized to the mTOR inhibitor, everolimus. CONCLUSIONS: Our findings suggest that breast cancers with loss of p85α may not respond to mTOR inhibition, but may be sensitive to MEK inhibition.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Sistema de Sinalização das MAP Quinases , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Marcação de Genes , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
6.
Int J Cancer ; 143(8): 1994-2007, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29756386

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is characterized by epithelial mutations in KRAS and prominent tumor-associated inflammation, including macrophage infiltration. But knowledge of early interactions between neoplastic epithelium and macrophages in PDA carcinogenesis is limited. Using a pancreatic organoid model, we found that the expression of mutant KRAS in organoids increased (i) ductal to acinar gene expression ratios, (ii) epithelial cells proliferation and (iii) colony formation capacity in vitro, and endowed pancreatic cells with the ability to generate neoplastic tumors in vivo. KRAS mutations induced a protumorigenic phenotype in macrophages. Altered macrophages decreased epithelial pigment epithelial derived factor (PEDF) expression and induced a cancerous phenotype. We validated our findings using annotated patient samples from The Cancer Genome Atlas (TCGA) and in our human PDA specimens. Epithelium-macrophage cross-talk occurs early in pancreatic carcinogenesis where KRAS directly induces cancer-related phenotypes in epithelium, and also promotes a protumorigenic phenotype in macrophages, in turn augmenting neoplastic growth.


Assuntos
Transformação Celular Neoplásica/genética , Células Epiteliais/patologia , Macrófagos/patologia , Mutação/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Células RAW 264.7 , Neoplasias Pancreáticas
7.
Int J Cancer ; 140(11): 2484-2497, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28263391

RESUMO

Risk biomarkers for estrogen receptor (ER)-negative breast cancer have clear value for breast cancer prevention. We previously reported a set of lipid metabolism (LiMe) genes with high expression in the contralateral unaffected breasts (CUBs) of ER-negative cancer cases. We now further examine LiMe gene expression in both tumor and CUB, and investigate the role of Pre-B-cell leukemia homeobox-1 (PBX1) as a candidate common transcription factor for LiMe gene expression. mRNA was extracted from laser-capture microdissected epithelium from tumor and CUB of 84 subjects (28 ER-positive cases, 28 ER-negative cases, 28 healthy controls). Gene expression was quantitated by qRT-PCR. Logistic regression models were generated to predict ER status of the contralateral cancer. Protein expression of HMGCS2 and PBX1 was measured using immunohistochemistry. The effect of PBX1 on LiMe gene expression was examined by overexpressing PBX1 in MCF10A cells with or without ER, and by suppressing PBX1 in MDA-MB-453 cells. The expression of DHRS2, HMGCS2, UGT2B7, UGT2B11, ALOX15B, HPGD, UGT2B28 and GLYATL1 was significantly higher in ER-negative versus ER-positive CUBs, and predicted ER status of the tumor in test and validation sets. In contrast, LiMe gene expression was significantly lower in ER-negative than ER-positive tumors. PBX1 overexpression in MCF10A cells up-regulated most LiMe genes, but not in MCF10A cells overexpressing ER. Suppressing PBX1 in MDA-MB-453 cells resulted in decrease of LiMe gene expression. Four binding sites of PBX1 and cofactor were identified in three lipid metabolism genes using ChIP-qPCR. These data suggest a novel role for PBX1 in the regulation of lipid metabolism genes in benign breast, which may contribute to ER-negative tumorigenesis.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Metabolismo dos Lipídeos/genética , Proteínas Proto-Oncogênicas/genética , Receptores de Estrogênio/genética , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Fator de Transcrição 1 de Leucemia de Células Pré-B , RNA Mensageiro/genética , Regulação para Cima/genética
8.
Breast Cancer Res Treat ; 156(1): 33-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26915040

RESUMO

A review of the literature finds that women diagnosed with breast cancer, who were on an aspirin regimen, experienced a decreased risk of distant metastases and death. Several recent studies have reported an improvement in overall survival in colorectal cancer patients who harbored mutations in the oncogene PIK3CA and received a daily aspirin regimen. Breast cancer patients on a daily aspirin regimen experienced decreased risk of distant metastases and death. PIK3CA is the most frequently mutated oncogene in breast cancer, occurring in up to 45 % of all breast cancers. In order to determine if mutations in PIK3CA sensitized breast cancers to aspirin treatment, we employed the use of isogenic cellular clones of the non-tumorigenic, breast epithelial cell line MCF-10A that harbored mutations in either PIK3CA or KRAS or both. We report that mutations in both PIK3CA and KRAS are required for the greatest aspirin sensitivity in breast cancer, and that the GSK3ß protein was hyperphosphorylated in aspirin-treated double knockin cells, but not in other clones/treatments. A more modest effect was observed with single mutant PIK3CA, but not KRAS alone. These observations were further confirmed in a panel of breast cancer cell lines. Our findings provide the first evidence that mutations in PIK3CA sensitize breast cancer cells to aspirin.


Assuntos
Aspirina/farmacologia , Neoplasias da Mama/genética , Citostáticos/farmacologia , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Células MCF-7 , Mutação , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética
9.
Proc Natl Acad Sci U S A ; 111(49): 17606-11, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422431

RESUMO

Tamoxifen is effective for treating estrogen receptor-alpha (ER) positive breast cancers. However, few molecular mediators of tamoxifen resistance have been elucidated. Here we describe a previously unidentified gene, MACROD2 that confers tamoxifen resistance and estrogen independent growth. We found MACROD2 is amplified and overexpressed in metastatic tamoxifen-resistant tumors. Transgene overexpression of MACROD2 in breast cancer cell lines results in tamoxifen resistance, whereas RNAi-mediated gene knock down reverses this phenotype. MACROD2 overexpression also leads to estrogen independent growth in xenograft assays. Mechanistically, MACROD2 increases p300 binding to estrogen response elements in a subset of ER regulated genes. Primary breast cancers and matched metastases demonstrate MACROD2 expression can change with disease evolution, and increased expression and amplification of MACROD2 in primary tumors is associated with worse overall survival. These studies establish MACROD2 as a key mediator of estrogen independent growth and tamoxifen resistance, as well as a potential novel target for diagnostics and therapy.


Assuntos
Neoplasias da Mama/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Estrogênios/metabolismo , Hidrolases/metabolismo , Tamoxifeno/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Feminino , Deleção de Genes , Dosagem de Genes , Humanos , Dados de Sequência Molecular , Transplante de Neoplasias , Fenótipo , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Estrogênio/metabolismo , Transgenes , Resultado do Tratamento
10.
Cancer Res ; 73(11): 3248-61, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23580570

RESUMO

The selective pressures leading to cancers with mutations in both KRAS and PIK3CA are unclear. Here, we show that somatic cell knockin of both KRAS G12V and oncogenic PIK3CA mutations in human breast epithelial cells results in cooperative activation of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways in vitro, and leads to tumor formation in immunocompromised mice. Xenografts from double-knockin cells retain single copies of mutant KRAS and PIK3CA, suggesting that tumor formation does not require increased copy number of either oncogene, and these results were also observed in human colorectal cancer specimens. Mechanistically, the cooperativity between mutant KRAS and PIK3CA is mediated in part by Ras/p110α binding, as inactivating point mutations within the Ras-binding domain of PIK3CA significantly abates pathway signaling. In addition, Pdk1 activation of the downstream effector p90RSK is also increased by the combined presence of mutant KRAS and PIK3CA. These results provide new insights into mutant KRAS function and its role in carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Células Epiteliais/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processos de Crescimento Celular/fisiologia , Transformação Celular Neoplásica/patologia , Classe I de Fosfatidilinositol 3-Quinases , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Feminino , Técnicas de Introdução de Genes , Xenoenxertos , Humanos , Hospedeiro Imunocomprometido , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Mutação Puntual , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas ras/metabolismo
11.
Breast Cancer Res ; 14(1): R27, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22321971

RESUMO

INTRODUCTION: Although a high frequency of androgen receptor (AR) expression in human breast cancers has been described, exploiting this knowledge for therapy has been challenging. This is in part because androgens can either inhibit or stimulate cell proliferation in pre-clinical models of breast cancer. In addition, many breast cancers co-express other steroid hormone receptors that can affect AR signaling, further obfuscating the effects of androgens on breast cancer cells. METHODS: To create better-defined models of AR signaling in human breast epithelial cells, we took estrogen receptor (ER)-α-negative and progesterone receptor (PR)-negative human breast epithelial cell lines, both cancerous and non-cancerous, and engineered them to express AR, thus allowing the unambiguous study of AR signaling. We cloned a full-length cDNA of human AR, and expressed this transgene in MCF-10A non-tumorigenic human breast epithelial cells and MDA-MB-231 human breast-cancer cells. We characterized the responses to AR ligand binding using various assays, and used isogenic MCF-10A p21 knock-out cell lines expressing AR to demonstrate the requirement for p21 in mediating the proliferative responses to AR signaling in human breast epithelial cells. RESULTS: We found that hyperactivation of the mitogen-activated protein kinase (MAPK) pathway from both AR and epidermal growth factor receptor (EGFR) signaling resulted in a growth-inhibitory response, whereas MAPK signaling from either AR or EGFR activation resulted in cellular proliferation. Additionally, p21 gene knock-out studies confirmed that AR signaling/activation of the MAPK pathway is dependent on p21. CONCLUSIONS: These studies present a new model for the analysis of AR signaling in human breast epithelial cells lacking ERα/PR expression, providing an experimental system without the potential confounding effects of ERα/PR crosstalk. Using this system, we provide a mechanistic explanation for previous observations ascribing a dual role for AR signaling in human breast cancer cells. As previous reports have shown that approximately 40% of breast cancers can lack p21 expression, our data also identify potential new caveats for exploiting AR as a target for breast cancer therapy.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Androgênicos/fisiologia , Antagonistas de Androgênios/farmacologia , Androgênios/farmacologia , Anilidas/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Ativação Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Receptor alfa de Estrogênio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Expressão Gênica , Humanos , Metribolona/farmacologia , Nitrilas/farmacologia , Receptores Androgênicos/biossíntese , Receptores Androgênicos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Compostos de Tosil/farmacologia , Regulação para Cima
12.
Proc Natl Acad Sci U S A ; 108(43): 17773-8, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21987798

RESUMO

Biallelic inactivation of cancer susceptibility gene BRCA1 leads to breast and ovarian carcinogenesis. Paradoxically, BRCA1 deficiency in mice results in early embryonic lethality, and similarly, lack of BRCA1 in human cells is thought to result in cellular lethality in view of BRCA1's essential function. To survive homozygous BRCA1 inactivation during tumorigenesis, precancerous cells must accumulate additional genetic alterations, such as p53 mutations, but this requirement for an extra genetic "hit" contradicts the two-hit theory for the accelerated carcinogenesis associated with familial cancer syndromes. Here, we show that heterozygous BRCA1 inactivation results in genomic instability in nontumorigenic human breast epithelial cells in vitro and in vivo. Using somatic cell gene targeting, we demonstrated that a heterozygous BRCA1 185delAG mutation confers impaired homology-mediated DNA repair and hypersensitivity to genotoxic stress. Heterozygous mutant BRCA1 cell clones also showed a higher degree of gene copy number loss and loss of heterozygosity in SNP array analyses. In BRCA1 heterozygous clones and nontumorigenic breast epithelial tissues from BRCA mutation carriers, FISH revealed elevated genomic instability when compared with their respective controls. Thus, BRCA1 haploinsufficiency may accelerate hereditary breast carcinogenesis by facilitating additional genetic alterations.


Assuntos
Mama/citologia , Células Epiteliais/fisiologia , Genes BRCA1 , Instabilidade Genômica/genética , Haploinsuficiência/genética , Feminino , Inativação Gênica , Instabilidade Genômica/fisiologia , Heterozigoto , Humanos , Hibridização in Situ Fluorescente , Polimorfismo de Nucleotídeo Único , Deleção de Sequência/genética
13.
Cancer Biol Ther ; 11(3): 358-67, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21124076

RESUMO

A high frequency of somatic mutations has been found in breast cancers within the gene encoding the catalytic p110α subunit of PI3K, PIK3CA. Using isogenic human breast epithelial cells, we have previously demonstrated that oncogenic PIK3CA "hotspot" mutations predict for response to the toxic effects of lithium. However, other somatic genetic alterations occur within this pathway in breast cancers, and it is possible that these changes may also predict for lithium sensitivity. We overexpressed the epidermal growth factor receptor (EGFR) into the non-tumorigenic human breast epithelial cell line MCF-10A, and compared these cells to isogenic cell lines previously created via somatic cell gene targeting to model Pten loss, PIK3CA mutations, and the invariant AKT1 mutation, E17K. EGFR overexpressing clones were capable of cellular proliferation in the absence of EGF and were sensitive to lithium similar to the results previously seen with cells harboring PIK3CA mutations. In contrast, AKT1 E17K cells and PTEN -/- cells displayed resistance or partial sensitivity to lithium, respectively. Western blot analysis demonstrated that lithium sensitivity correlated with significant decreases in both PI3K and MAPK signaling that were observed only in EGFR overexpressing and mutant PIK3CA cell lines. These studies demonstrate that EGFR overexpression and PIK3CA mutations are predictors of response to lithium, whereas Pten loss and AKT1 E17K mutations do not predict for lithium sensitivity. Our findings may have important implications for the use of these genetic lesions in breast cancer patients as predictive markers of response to emerging PI3K pathway inhibitors.


Assuntos
Mama/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/genética , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico , Fosfatidilinositol 3-Quinases/genética , Mama/metabolismo , Linhagem Celular , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Feminino , Expressão Gênica , Humanos , Immunoblotting , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
14.
Proc Natl Acad Sci U S A ; 106(8): 2835-40, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19196980

RESUMO

The phosphatidylinositol 3-kinase subunit PIK3CA is frequently mutated in human cancers. Here we used gene targeting to "knock in" PIK3CA mutations into human breast epithelial cells to identify new therapeutic targets associated with oncogenic PIK3CA. Mutant PIK3CA knockin cells were capable of epidermal growth factor and mTOR-independent cell proliferation that was associated with AKT, ERK, and GSK3beta phosphorylation. Paradoxically, the GSK3beta inhibitors lithium chloride and SB216763 selectively decreased the proliferation of human breast and colorectal cancer cell lines with oncogenic PIK3CA mutations and led to a decrease in the GSK3beta target gene CYCLIN D1. Oral treatment with lithium preferentially inhibited the growth of nude mouse xenografts of HCT-116 colon cancer cells with mutant PIK3CA compared with isogenic HCT-116 knockout cells containing only wild-type PIK3CA. Our findings suggest GSK3beta is an important effector of mutant PIK3CA, and that lithium, an FDA-approved therapy for bipolar disorders, has selective antineoplastic properties against cancers that harbor these mutations.


Assuntos
Mutação , Oncogenes , Fosfatidilinositol 3-Quinases/genética , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Introdução de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Nus , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR , Transplante Heterólogo
15.
Prostate ; 69(6): 603-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19125417

RESUMO

BACKGROUND: Small cell carcinoma of the prostate is an uncommon neoplasm, the origin of which has been controversial. To address this, we performed transcriptome profiling and TP53 sequencing of concurrent small cell and prostatic adenocarcinoma to determine the relationship between these entities. METHODS: We identified an unusual case of primary prostate cancer that contained adjacent acinar adenocarcinoma (Gleason score 4 + 3 = 7) and small cell carcinoma. We performed laser capture microdissection to isolate tumor components and performed gene expression and TP53 gene sequence analysis on each component, with results validated by immunohistochemistry for PSA, PSAP, PSMA, androgen receptor, NKX 3.1 and neuroendocrine markers. RESULTS: Transcriptome profiling of the carcinoma components identified 99 genes with a greater than 10-fold differential expression between prostatic adenocarcinoma and small cell carcinoma, many of which have not been previously reported in prostate cancer. The small cell carcinoma component demonstrated upregulation of proliferative and neuroendocrine markers and tyrosine kinase receptors, and downregulation of cell adhesion molecules, supporting the aggressive nature of this form of carcinoma. Sequencing of the TP53 gene suggested a common clonal origin for both components. CONCLUSIONS: This is the first report of a primary small cell carcinoma of the prostate subjected to extensive molecular analysis and the first to show a clonal relation between two morphologically distinct prostate cancer types. The evidence of progression to small cell carcinoma may yield important insights into the pathogenesis of this entity and provide a novel spectrum of molecular markers to further dissect cellular pathways important in tumor progression.


Assuntos
Adenocarcinoma/genética , Carcinoma de Células Pequenas/genética , Perfilação da Expressão Gênica , Mutação , Neoplasias da Próstata/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/patologia , Biópsia , Carcinoma de Células Pequenas/patologia , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia , Regulação para Cima
16.
Expert Rev Mol Med ; 10: e19, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18590585

RESUMO

Human cancers arise from an imbalance of cell growth and cell death. Key proteins that govern this balance are those that mediate the cell cycle. Several different molecular effectors have been identified that tightly regulate specific phases of the cell cycle, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors. Notably, loss of expression or function of two G1-checkpoint CDK inhibitors - p21 (CDKN1A) and p27 (CDKN1B) - has been implicated in the genesis or progression of many human malignancies. Additionally, there is a growing body of evidence suggesting that functional loss of p21 or p27 can mediate a drug-resistance phenotype. However, reports in the literature have also suggested p21 and p27 can promote tumours, indicating a paradoxical effect. Here, we review historic and recent studies of these two CDK inhibitors, including their identification, function, importance to carcinogenesis and finally their roles in drug resistance.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Camundongos Knockout , Neoplasias/patologia , Prognóstico
17.
Blood ; 111(2): 856-64, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17942756

RESUMO

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by recurrent chromosomal translocations. Patients with t(4;14)(p16;q32) are the worst prognostic subgroup in MM, although the basis for this poor prognosis is unknown. The t(4;14) is unusual in that it involves 2 potential target genes: fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET). MMSET is universally overexpressed in t(4;14) MM, whereas FGFR3 expression is lost in one-third of cases. Nonetheless, the role of MMSET in t(4;14) MM has remained unclear. Here we demonstrate a role for MMSET in t(4;14) MM cells. Down-regulation of MMSET expression in MM cell lines by RNA interference and by selective disruption of the translocated MMSET allele using gene targeting dramatically reduced colony formation in methylcellulose but had only modest effects in liquid culture. In addition, MMSET knockdown led to cell-cycle arrest of adherent MM cells and reduced the ability of MM cells to adhere to extracellular matrix. Finally, MMSET knockdown and knockout reduced tumor formation by MM xenografts. These results provide the first direct evidence that MMSET plays a significant role in t(4;14) MM and suggest that therapies targeting this gene could impact this particular subset of poor-prognosis patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/biossíntese , Mieloma Múltiplo/metabolismo , Proteínas Repressoras/biossíntese , Alelos , Animais , Adesão Celular/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 14/metabolismo , Cromossomos Humanos Par 4/genética , Cromossomos Humanos Par 4/metabolismo , Ensaio de Unidades Formadoras de Colônias , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Marcação de Genes , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Camundongos Nus , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Transplante de Neoplasias , Prognóstico , Interferência de RNA , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/biossíntese , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Proteínas Repressoras/genética , Translocação Genética/genética , Transplante Heterólogo
18.
Proc Natl Acad Sci U S A ; 105(1): 288-93, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162533

RESUMO

Tamoxifen is widely used for the treatment of hormonally responsive breast cancers. However, some resistant breast cancers develop a growth proliferative response to this drug, as evidenced by tumor regression upon its withdrawal. To elucidate the molecular mediators of this paradox, tissue samples from a patient with tamoxifen-stimulated breast cancer were analyzed. These studies revealed that loss of the cyclin-dependent kinase inhibitor p21 was associated with a tamoxifen growth-inducing phenotype. Immortalized human breast epithelial cells with somatic deletion of the p21 gene were then generated and displayed a growth proliferative response to tamoxifen, whereas p21 wild-type cells demonstrated growth inhibition upon tamoxifen exposure. Mutational and biochemical analyses revealed that loss of p21's cyclin-dependent kinase inhibitory property results in hyperphosphorylation of estrogen receptor-alpha, with subsequent increased gene expression of estrogen receptor-regulated genes. These data reveal a previously uncharacterized molecular mechanism of tamoxifen resistance and have potential clinical implications for the management of tamoxifen-resistant breast cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Receptor alfa de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Pessoa de Meia-Idade , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Resultado do Tratamento
19.
Cancer Res ; 67(18): 8460-7, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17875684

RESUMO

The oncogenic function of mutant ras in mammalian cells has been extensively investigated using multiple human and animal models. These systems include overexpression of exogenous mutant ras transgenes, conditionally expressed knock-in mouse models, and somatic cell knockout of mutant and wild-type ras genes in human cancer cell lines. However, phenotypic discrepancies between knock-in mice and transgenic mutant ras overexpression prompted us to evaluate the consequences of targeted knock-in of an oncogenic K-ras mutation in the nontumorigenic human breast epithelial cell line MCF-10A and hTERT-immortalized human mammary epithelial cells. Our results show several significant differences between mutant K-ras knock-in cells versus their transgene counterparts, including limited phosphorylation of the downstream molecules extracellular signal-regulated kinase and AKT, minor proliferative capacity in the absence of an exogenous growth factor, and the inability to form colonies in semisolid medium. Analysis of 16 cancer cell lines carrying mutant K-ras genes indicated that 50% of cancer cells harbor nonoverexpressed heterozygous K-ras mutations similar to the expression seen in our knock-in cell lines. Thus, this system serves as a new model for elucidating the oncogenic contribution of mutant K-ras as expressed in a large fraction of human cancer cells.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Genes ras/genética , Mutação , Alelos , Mama/metabolismo , Mama/patologia , Mama/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Telomerase/genética , Transgenes , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/biossíntese , Proteínas ras/genética , Proteínas ras/metabolismo
20.
Cancer Biol Ther ; 6(7): 1025-30, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17611398

RESUMO

RNA interference (RNAi) has become a popular tool for analyzing gene function in cancer research. The feasibility of using RNAi in cellular and animal models as an alternative to conventional gene knock out approaches has been demonstrated. Although these studies show that RNAi can recapitulate phenotypes seen in knock out animals and their derived cell lines, a systematic study rigorously comparing downstream effector genes between RNAi and gene knock out has not been performed. Here we present data contrasting the phenotypic and genotypic changes that occur with either stable knock down via RNAi of the cyclin dependent kinase inhibitor p21 versus its somatic cell knock out counterpart in the human mammary epithelial cell line MCF-10A. Our results demonstrate that p21 knock down clones display a growth proliferative response upon exposure to Transforming Growth Factor-Beta Type 1 (TGFbeta) similar to p21 knock out clones. However, gene expression profiles were significantly different in p21 knock down cells versus p21 knock out clones. Importantly p21 knock down clones did not display increased gene expression of interleukin-1alpha (IL-1alpha), a critical effector of this growth response previously validated in p21 knock out cells. We conclude that gene knock out can yield additional vital information that may be missed with gene knock down strategies.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Linhagem Celular Tumoral , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA