Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38513665

RESUMO

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Assuntos
Interleucina-23 , Periodontite , Humanos , Células Epiteliais , Inflamação , Receptor 5 Toll-Like/metabolismo
2.
J Biol Chem ; 295(5): 1411-1425, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31882545

RESUMO

The importance of the microbiome in health and its disruption in disease is continuing to be elucidated. However, the multitude of host and environmental factors that influence the microbiome are still largely unknown. Here, we examined UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 3 (Galnt3)-deficient mice, which serve as a model for the disease hyperphosphatemic familial tumoral calcinosis (HFTC). In HFTC, loss of GALNT3 activity in the bone is thought to lead to altered glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23), resulting in hyperphosphatemia and subdermal calcified tumors. However, GALNT3 is expressed in other tissues in addition to bone, suggesting that systemic loss could result in other pathologies. Using semiquantitative real-time PCR, we found that Galnt3 is the major O-glycosyltransferase expressed in the secretory cells of salivary glands. Additionally, 16S rRNA gene sequencing revealed that the loss of Galnt3 resulted in changes in the structure, composition, and stability of the oral microbiome. Moreover, we identified the major secreted salivary mucin, Muc10, as an in vivo substrate of Galnt3. Given that mucins and their O-glycans are known to interact with various microbes, our results suggest that loss of Galnt3 decreases glycosylation of Muc10, which alters the composition and stability of the oral microbiome. Considering that oral findings have been documented in HFTC patients, our study suggests that investigating GALNT3-mediated changes in the oral microbiome may be warranted.


Assuntos
Calcinose/metabolismo , Calcinose/microbiologia , Hiperostose Cortical Congênita/metabolismo , Hiperostose Cortical Congênita/microbiologia , Hiperfosfatemia/metabolismo , Hiperfosfatemia/microbiologia , Microbiota/genética , N-Acetilgalactosaminiltransferases/metabolismo , Glândulas Salivares/metabolismo , Animais , Calcinose/genética , Feminino , Fator de Crescimento de Fibroblastos 23 , Glicosilação , Glicosiltransferases/metabolismo , Hiperostose Cortical Congênita/genética , Hiperfosfatemia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucinas/química , Mucinas/metabolismo , N-Acetilgalactosaminiltransferases/genética , Polissacarídeos/metabolismo , RNA Ribossômico 16S/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
3.
Sci Transl Med ; 10(463)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333238

RESUMO

Periodontitis is one of the most common human inflammatory diseases, yet the mechanisms that drive immunopathology and could be therapeutically targeted are not well defined. Here, we demonstrate an expansion of resident memory T helper 17 (TH17) cells in human periodontitis. Phenocopying humans, TH17 cells expanded in murine experimental periodontitis through local proliferation. Unlike homeostatic oral TH17 cells, which accumulate in a commensal-independent and interleukin-6 (IL-6)-dependent manner, periodontitis-associated expansion of TH17 cells was dependent on the local dysbiotic microbiome and required both IL-6 and IL-23. TH17 cells and associated neutrophil accumulation were necessary for inflammatory tissue destruction in experimental periodontitis. Genetic or pharmacological inhibition of TH17 cell differentiation conferred protection from immunopathology. Studies in a unique patient population with a genetic defect in TH17 cell differentiation established human relevance for our murine experimental studies. In the oral cavity, human TH17 cell defects were associated with diminished periodontal inflammation and bone loss, despite increased prevalence of recurrent oral fungal infections. Our study highlights distinct functions of TH17 cells in oral immunity and inflammation and paves the way to a new targeted therapeutic approach for the treatment of periodontitis.


Assuntos
Disbiose/imunologia , Disbiose/microbiologia , Microbiota , Mucosa Bucal/imunologia , Mucosa Bucal/patologia , Células Th17/imunologia , Animais , Bactérias/metabolismo , Reabsorção Óssea/microbiologia , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Camundongos , Neutrófilos/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Periodontite/imunologia , Periodontite/microbiologia , Periodontite/patologia
4.
Sci Transl Med ; 10(451)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045979

RESUMO

Oral mucosal wound healing has long been regarded as an ideal system of wound resolution. However, the intrinsic characteristics that mediate optimal healing at mucosal surfaces are poorly understood, particularly in humans. We present a unique comparative analysis between human oral and cutaneous wound healing using paired and sequential biopsies during the repair process. Using molecular profiling, we determined that wound-activated transcriptional networks are present at basal state in the oral mucosa, priming the epithelium for wound repair. We show that oral mucosal wound-related networks control epithelial cell differentiation and regulate inflammatory responses, highlighting fundamental global mechanisms of repair and inflammatory responses in humans. The paired comparative analysis allowed for the identification of differentially expressed SOX2 (sex-determining region Y-box 2) and PITX1 (paired-like homeodomain 1) transcriptional regulators in oral versus skin keratinocytes, conferring a unique identity to oral keratinocytes. We show that SOX2 and PITX1 transcriptional function has the potential to reprogram skin keratinocytes to increase cell migration and improve wound resolution in vivo. Our data provide insights into therapeutic targeting of chronic and nonhealing wounds based on greater understanding of the biology of healing in human mucosal and cutaneous environments.


Assuntos
Mucosa Bucal/metabolismo , Cicatrização/fisiologia , Biópsia , Humanos , Queratinócitos/metabolismo , Pele/citologia , Pele/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cicatrização/genética
5.
Microbiome ; 4: 13, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27044504

RESUMO

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) complex subunits (gp91(phox) (a.k.a. Nox2), p47(phox), p67(phox), p22(phox), p40(phox)) leading to reduced phagocyte-derived reactive oxygen species production. Almost half of patients with CGD develop inflammatory bowel disease, and the involvement of the intestinal microbiome in relation to this predisposing immunodeficiency has not been explored. RESULTS: Although CGD mice do not spontaneously develop colitis, we demonstrate that p47(phox-/-) mice have increased susceptibility to dextran sodium sulfate colitis in association with a distinct colonic transcript and microbiome signature. Neither restoring NOX2 reactive oxygen species production nor normalizing the microbiome using cohoused adult p47(phox-/-) with B6Tac (wild type) mice reversed this phenotype. However, breeding p47(phox+/-) mice and standardizing the microflora between littermate p47(phox-/-) and B6Tac mice from birth significantly reduced dextran sodium sulfate colitis susceptibility in p47(phox-/-) mice. We found similarly decreased colitis susceptibility in littermate p47(phox-/-) and B6Tac mice treated with Citrobacter rodentium. CONCLUSIONS: Our findings suggest that the microbiome signature established at birth may play a bigger role than phagocyte-derived reactive oxygen species in mediating colitis susceptibility in CGD mice. These data further support bacteria-related disease in CGD colitis.


Assuntos
Colite/genética , Doença Granulomatosa Crônica/genética , Doenças Inflamatórias Intestinais/genética , Microbiota/genética , NADPH Oxidases/genética , Adulto , Animais , Citrobacter rodentium/patogenicidade , Citrobacter rodentium/fisiologia , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Cruzamentos Genéticos , Sulfato de Dextrana , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Doença Granulomatosa Crônica/microbiologia , Doença Granulomatosa Crônica/patologia , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Knockout , NADP/metabolismo , NADPH Oxidases/deficiência , Espécies Reativas de Oxigênio/metabolismo
6.
J. appl. oral sci ; 23(3): 329-355, May-Jun/2015. graf
Artigo em Inglês | LILACS, BBO | ID: lil-752428

RESUMO

Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.


Assuntos
Humanos , Citocinas/imunologia , Doenças Periodontais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Imunidade Adaptativa , Metaloproteinases da Matriz/imunologia , Ilustração Médica , Doenças Periodontais/etiologia
7.
J Periodontol ; 83(7): 948-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22181687

RESUMO

BACKGROUND: Interleukin-21 (IL-21) controls the differentiation of T-helper Th17 cells and induces the production of IL-17 in this T-cell subtype. The aim of this study is to determine the relative expression of IL-21 in gingival tissues of chronic periodontitis patients and correlate/associate this expression with proinflammatory cytokines and clinical parameters of disease. METHODS: Samples of gingival biopsies were collected from chronic periodontitis patients (n = 10) and controls (n = 8). The mRNA expressions of IL-21, IL-1ß, IL-6, IL-17, IL-23, IL-10, and transforming growth factor-ß1 (TGF-ß1) were quantified using real-time reverse transcription-polymerase chain reaction. IL-21 levels were compared between chronic periodontitis and healthy gingival tissues and correlated with cytokine and clinical parameters of tissue destruction. RESULTS: A significant overexpression of IL-21, IL-1ß, IL-6, IL-17, and IL-23p19 was detected in periodontal disease-affected tissues compared to healthy gingival tissues. IL-10 and TGF-ß1 were, however, downregulated in periodontal lesions. IL-21 yielded significant positive correlations with probing depth, clinical attachment level, IL-1ß, and IL-6. In addition, IL-21 was negatively correlated with IL-10 and TGF-ß1. CONCLUSIONS: IL-21 was overexpressed in chronic periodontitis gingival tissues and correlated with clinical parameters of periodontal destruction and with proinflammatory cytokines. Therefore, IL-21 might play a role in the tissue destruction that characterizes chronic periodontal disease.


Assuntos
Periodontite Crônica/imunologia , Citocinas/análise , Mediadores da Inflamação/análise , Interleucinas/análise , Adulto , Índice de Placa Dentária , Feminino , Gengiva/imunologia , Humanos , Interleucina-10/análise , Interleucina-17/análise , Interleucina-1beta/análise , Interleucina-23/análise , Subunidade p19 da Interleucina-23/análise , Interleucina-6/análise , Masculino , Pessoa de Meia-Idade , Perda da Inserção Periodontal/imunologia , Índice Periodontal , Bolsa Periodontal/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta1/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA