Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mov Disord ; 39(2): 400-410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314870

RESUMO

BACKGROUND: Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE: The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS: We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS: Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS: A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesias , Transtornos dos Movimentos , Masculino , Feminino , Humanos , Netrina-1/genética , Receptor DCC/genética , Transtornos dos Movimentos/genética , Mutação de Sentido Incorreto/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética
2.
Neurol Genet ; 9(6): e200103, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37900581

RESUMO

Background and Objectives: Somatic and germline pathogenic variants in genes of the mammalian target of rapamycin (mTOR) signaling pathway are a common mechanism underlying a subset of focal malformations of cortical development (FMCDs) referred to as mTORopathies, which include focal cortical dysplasia (FCD) type II, subtypes of polymicrogyria, and hemimegalencephaly. Our objective is to screen resected FMCD specimens with mTORopathy features on histology for causal somatic variants in mTOR pathway genes, describe novel pathogenic variants, and examine the variant distribution in relation to neuroimaging, histopathologic classification, and clinical outcomes. Methods: We performed ultra-deep sequencing using a custom HaloPlexHS Target Enrichment kit in DNA from 21 resected fresh-frozen histologically confirmed FCD type II, tuberous sclerosis complex, or hemimegalencephaly specimens. We mapped the variant alternative allele frequency (AAF) across the resected brain using targeted ultra-deep sequencing in multiple formalin-fixed paraffin-embedded tissue blocks. We also functionally validated 2 candidate somatic MTOR variants and performed targeted RNA sequencing to validate a splicing defect associated with a novel DEPDC5 variant. Results: We identified causal mTOR pathway gene variants in 66.7% (14/21) of patients, of which 13 were somatic with AAF ranging between 0.6% and 12.0%. Moreover, the AAF did not predict balloon cell presence. Favorable seizure outcomes were associated with genetically clear resection borders. Individuals in whom a causal somatic variant was undetected had excellent postsurgical outcomes. In addition, we demonstrate pathogenicity of the novel c.4373_4375dupATG and candidate c.7499T>A MTOR variants in vitro. We also identified a novel germline aberrant splice site variant in DEPDC5 (c.2802-1G>C). Discussion: The AAF of somatic pathogenic variants correlated with the topographic distribution, histopathology, and postsurgical outcomes. Moreover, cortical regions with absent histologic FCD features had negligible or undetectable pathogenic variant loads. By contrast, specimens with frank histologic abnormalities had detectable pathogenic variant loads, which raises important questions as to whether there is a tolerable variant threshold and whether surgical margins should be clean, as performed in tumor resections. In addition, we describe 2 novel pathogenic variants, expanding the mTORopathy genetic spectrum. Although most pathogenic somatic variants are located at mutation hotspots, screening the full-coding gene sequence remains necessary in a subset of patients.

3.
Pediatr Neurol ; 149: 84-92, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820543

RESUMO

BACKGROUND: P-21-activated kinases (PAKs) are protein serine/threonine kinases, part of the RAS/mitogen-activated protein kinase pathway. PAK1 is highly expressed in the central nervous system and crucially involved in neuronal migration and brain developmental processes. Recently, de novo heterozygous missense variants in PAK1 have been identified as an ultrarare cause of pediatric neurodevelopmental disorders. METHODS: We report a series of children affected with postnatal macrocephaly, neurodevelopmental impairment, and drug-resistant epilepsy. Repeated electroencephalographic (EEG) and video-EEG evaluations were performed over a two- to 10-year period during follow-up to delineate electroclinical histories. Genetic sequencing studies and computational evaluation of the identified variants were performed in our patient cohort. RESULTS: We identified by whole-exome sequencing three novel de novo variants in PAK1 (NM_001128620: c.427A>G, p.Met143Val; c.428T>C, p.Met143Thr; c.428T>A, p.Met143Lys) as the underlying cause of the disease in our families. The three variants affected the same highly conserved Met143 residue within the cysteine-rich inhibitor of PAK1 (CRIPaK) domain, which was identified before as a PAK1 inhibitor target. Computational studies suggested a defective autoinhibition presumably due to impaired PAK1 autoregulation as a result of the recurrent substitution. CONCLUSIONS: We delineated the electroclinical phenotypes of PAK1-related neurological disorders and highlight a novel mutational hotspot that may involve defective autoinhibition of the PAK1 protein. The three novel variants affecting the same hotspot residue within the CRIPaK domain highlight potentially impaired PAK1-CRIPaK interaction as a novel disease mechanism. These findings shed light on possible future treatments targeted at the CRIPaK domain, to modulate PAK1 activity and function.


Assuntos
Transtornos do Neurodesenvolvimento , Quinases Ativadas por p21 , Criança , Humanos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/química , Quinases Ativadas por p21/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto
4.
Cerebellum ; 22(2): 206-222, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218524

RESUMO

Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.


Assuntos
Encéfalo , Malformações do Sistema Nervoso , Animais , Feminino , Humanos , Camundongos , Cerebelo/anormalidades , Neurônios
5.
J Clin Endocrinol Metab ; 107(10): e4132-e4143, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35881919

RESUMO

CONTEXT: The etiology of central precocious puberty (CPP) includes a spectrum of conditions. Girls younger than age 6 years with CPP should undergo cranial magnetic resonance imaging (MRI), but it remains controversial whether all girls who develop CPP between the ages of 6 and 8 years require neuroimaging examination. OBJECTIVE: To investigate the frequency of brain MRI abnormalities in girls diagnosed with CPP and the relationship between maternal factors, their age at presentation, clinical signs and symptoms, hormonal profiles, and neuroimaging findings. METHODS: Data were collected between January 2005 and September 2019 from 112 girls who showed clinical pubertal progression before 8 years of age who underwent brain MRI. RESULTS: MRI was normal in 47 (42%) idiopathic (I) scans, 54 (48%) patients had hypothalamic-pituitary anomalies (HPA) and/or extra-HP anomalies (EHPA), and 11 (10%) had brain tumors or tumor-like conditions (BT/TL), including 3 with neurological signs. Associated preexisting disorders were documented in 16. Girls with BT/TL had a higher LH peak after GnRH test (P = 0.01) than I, and those older than age 6 years had a higher craniocaudal diameter of the pituitary gland (P = 0.01); their baseline FSH and LH (P = 0.004) and peak FSH (P = 0.01) and LH (P = 0.05) values were higher than I. Logistic regression showed maternal age at menarche (P = 0.02) and peak FSH (P = 0.02) as BT/TL risk factors. CONCLUSIONS: MRI provides valuable information in girls with CPP by demonstrating that fewer than half have a normal brain MRI and that few can have significant intracranial lesions after the age of 6, despite the absence of suggestive neurological signs.


Assuntos
Neoplasias Encefálicas , Puberdade Precoce , Criança , Feminino , Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Humanos , Hormônio Luteinizante , Neuroimagem , Puberdade Precoce/etiologia
6.
Brain ; 145(9): 3308-3327, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35851598

RESUMO

Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.


Assuntos
Transtornos do Neurodesenvolvimento , Proteínas rac de Ligação ao GTP , Animais , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , Fenótipo , Quinases Ativadas por p21/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
7.
Brain ; 145(6): 1939-1948, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773235

RESUMO

Biallelic pathogenic variants in SZT2 result in a neurodevelopmental disorder with shared features, including early-onset epilepsy, developmental delay, macrocephaly, and corpus callosum abnormalities. SZT2 is as a critical scaffolding protein in the amino acid sensing arm of the mTORC1 signalling pathway. Due to its large size (3432 amino acids), lack of crystal structure, and absence of functional domains, it is difficult to determine the pathogenicity of SZT2 missense and in-frame deletions, but these variants are increasingly detected and reported by clinical genetic testing in individuals with epilepsy. To exemplify this latter point, here we describe a cohort of 12 individuals with biallelic SZT2 variants and phenotypic overlap with SZT2-related neurodevelopmental disorders. However, the majority of individuals carried one or more SZT2 variants of uncertain significance (VUS), highlighting the need for functional characterization to determine, which, if any, of these VUS were pathogenic. Thus, we developed a novel individualized platform to identify SZT2 loss-of-function variants in the context of mTORC1 signalling and reclassify VUS. Using this platform, we identified a recurrent in-frame deletion (SZT2 p.Val1984del) which was determined to be a loss-of-function variant and therefore likely pathogenic. Haplotype analysis revealed that this single in-frame deletion is a founder variant in those of Ashkenazi Jewish ancestry. Moreover, this approach allowed us to tentatively reclassify all of the VUS in our cohort of 12 individuals, identifying five individuals with biallelic pathogenic or likely pathogenic variants. Clinical features of these five individuals consisted of early-onset seizures (median 24 months), focal seizures, developmental delay and macrocephaly similar to previous reports. However, we also show a widening of the phenotypic spectrum, as none of the five individuals had corpus callosum abnormalities, in contrast to previous reports. Overall, we present a rapid assay to resolve VUS in SZT2, identify a founder variant in individuals of Ashkenazi Jewish ancestry, and demonstrate that corpus callosum abnormalities is not a hallmark feature of this condition. Our approach is widely applicable to other mTORopathies including the most common causes of the focal genetic epilepsies, DEPDC5, TSC1/2, MTOR and NPRL2/3.


Assuntos
Epilepsias Parciais , Epilepsia , Megalencefalia , Epilepsia/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Megalencefalia/genética , Proteínas do Tecido Nervoso/genética , Proteínas Supressoras de Tumor/genética
8.
Neuroradiology ; 64(11): 2163-2177, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35670822

RESUMO

PURPOSE: To explore the relationships between clinical-radiological features and surgical outcomes in subjects with interhemispheric cysts (IHC) and corpus callosum anomalies. METHODS: We reviewed the clinico-radiological and neurosurgical data of 38 patients surgically treated with endoscopic fenestration, shunting, or combined approaches from 2000 to 2018 (24 males, median age 9 years). Pre- and postoperative changes in IHC volume were calculated. Outcome assessment was based on clinico-radiological data. Group comparisons were performed using χ2, Fisher exact, Mann-Whitney U, and Kruskal-Wallis tests. RESULTS: Median age at first surgery was 4 months (mean follow-up 8.3 years). Eighteen individuals (47.3%) required > 1 intervention due to IHC regrowth and/or shunt malfunction. Larger preoperative IHC volume (P = .008) and younger age at surgery (P = .016) were associated with cyst regrowth. At last follow-up, mean cystic volume was 307.8 cm3, with IHC volume reduction > 66% in 19/38 (50%) subjects. The neurological outcome was good in 14/38 subjects (36.8%), fair in 18/38 (47.3%), and poor in 6/38 (15.7%). There were no differences in the postoperative cyst volume with respect to either the type of first surgery or overall surgery type. Higher absolute postoperative IHC reduction was observed in subjects who underwent both IHC fenestration and shunting procedures (P < .0001). No differences in neurological outcome were found according to patient age at surgery or degree of IHC reduction. CONCLUSION: Endoscopic fenestration and shunting approaches are both effective but often require multiple procedures especially in younger patients. Larger IHC are more frequently complicated by cyst regrowth after surgery.


Assuntos
Corpo Caloso , Cistos , Criança , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/cirurgia , Cistos/diagnóstico por imagem , Cistos/cirurgia , Endoscopia/métodos , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Procedimentos Neurocirúrgicos/métodos , Estudos Retrospectivos , Resultado do Tratamento
9.
Genet Med ; 24(2): 384-397, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906446

RESUMO

PURPOSE: We aimed to investigate the molecular basis underlying a novel phenotype including hypopituitarism associated with primary ovarian insufficiency. METHODS: We used next-generation sequencing to identify variants in all pedigrees. Expression of Rnpc3/RNPC3 was analyzed by in situ hybridization on murine/human embryonic sections. CRISPR/Cas9 was used to generate mice carrying the p.Leu483Phe pathogenic variant in the conserved murine Rnpc3 RRM2 domain. RESULTS: We described 15 patients from 9 pedigrees with biallelic pathogenic variants in RNPC3, encoding a specific protein component of the minor spliceosome, which is associated with a hypopituitary phenotype, including severe growth hormone (GH) deficiency, hypoprolactinemia, variable thyrotropin (also known as thyroid-stimulating hormone) deficiency, and anterior pituitary hypoplasia. Primary ovarian insufficiency was diagnosed in 8 of 9 affected females, whereas males had normal gonadal function. In addition, 2 affected males displayed normal growth when off GH treatment despite severe biochemical GH deficiency. In both mouse and human embryos, Rnpc3/RNPC3 was expressed in the developing forebrain, including the hypothalamus and Rathke's pouch. Female Rnpc3 mutant mice displayed a reduction in pituitary GH content but with no reproductive impairment in young mice. Male mice exhibited no obvious phenotype. CONCLUSION: Our findings suggest novel insights into the role of RNPC3 in female-specific gonadal function and emphasize a critical role for the minor spliceosome in pituitary and ovarian development and function.


Assuntos
Hipopituitarismo , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Hipopituitarismo/genética , Masculino , Camundongos , Proteínas Nucleares/genética , Linhagem , Fenótipo , Insuficiência Ovariana Primária/genética , Prolactina/genética , Proteínas de Ligação a RNA/genética
10.
Eur J Med Genet ; 65(2): 104405, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34929393

RESUMO

PCDH12 is a member of the non-clustered protocadherins that mediate cell-cell adhesion, playing crucial roles in many biological processes. Among these, PCDH12 promotes cell-cell interactions at inter-endothelial junctions, exerting essential functions in vascular homeostasis and angiogenesis. However, its exact role in eye vascular and brain development is not completely understood. To date, biallelic loss of function variants in PCDH12 have been associated with a neurodevelopmental disorder characterized by the typical neuroradiological findings of diencephalic-mesencephalic junction dysplasia and intracranial calcifications, whereas heterozygous variants have been recently linked to isolated brain calcifications in absence of cognitive impairment or other brain malformations. Recently, the phenotypic spectrum associated with PCDH12 deficiency has been expanded including cerebellar and eye abnormalities. Here, we report two female siblings harboring a novel frameshift homozygous variant (c.2169delT, p.(Val724TyrfsTer8)) in PCDH12. In addition to the typical diencephalic-mesencephalic junction dysplasia, brain MRI showed dysmorphic basal ganglia and thalamus that were reminiscent of a tubulin-like phenotype, mild cerebellar vermis hypoplasia and extensive prominence of perivascular spaces in both siblings. The oldest sister developed profound and progressive monocular visual loss and the eye exam revealed exudative vitreoretinopathy. Similar but milder eye changes were also noted in her younger sister. In summary, our report expands the clinical (brain and ocular) spectrum of PCDH12-related disorders and adds a further line of evidence underscoring the important role of PCDH12 in retinal vascular and brain development.


Assuntos
Gânglios da Base/anormalidades , Deficiências do Desenvolvimento/genética , Vitreorretinopatias Exsudativas Familiares/genética , Protocaderinas/genética , Gânglios da Base/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/patologia , Vitreorretinopatias Exsudativas Familiares/patologia , Feminino , Mutação da Fase de Leitura , Homozigoto , Humanos , Fenótipo
11.
Ann Clin Transl Neurol ; 8(10): 2004-2012, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34510796

RESUMO

Data on fetal MRI in L1 syndrome are scarce with relevant implications for parental counseling and surgical planning. We identified two fetal MR imaging patterns in 10 fetuses harboring L1CAM mutations: the first, observed in 9 fetuses was characterized by callosal anomalies, diencephalosynapsis, and a distinct brainstem malformation with diencephalic-mesencephalic junction dysplasia and brainstem kinking. Cerebellar vermis hypoplasia, aqueductal stenosis, obstructive hydrocephalus, and pontine hypoplasia were variably associated. The second pattern observed in one fetus was characterized by callosal dysgenesis, reduced white matter, and pontine hypoplasia. The identification of these features should alert clinicians to offer a prenatal L1CAM testing.


Assuntos
Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Feto , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Feto/anormalidades , Feto/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Diagnóstico Pré-Natal , Estudos Retrospectivos
12.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919865

RESUMO

Neurofibromatosis type 1 (NF1) is a proteiform genetic condition caused by pathogenic variants in NF1 and characterized by a heterogeneous phenotypic presentation. Relevant genotype-phenotype correlations have recently emerged, but only few pertinent studies are available. We retrospectively reviewed clinical, instrumental, and genetic data from a cohort of 583 individuals meeting at least 1 diagnostic National Institutes of Health (NIH) criterion for NF1. Of these, 365 subjects fulfilled ≥2 NIH criteria, including 235 pediatric patients. Genetic testing was performed through cDNA-based sequencing, Next Generation Sequencing (NGS), and Multiplex Ligation-dependent Probe Amplification (MLPA). Uni- and multivariate statistical analysis was used to investigate genotype-phenotype correlations. Among patients fulfilling ≥ 2 NIH criteria, causative single nucleotide variants (SNVs) and copy number variations (CNVs) were detected in 267/365 (73.2%) and 20/365 (5.5%) cases. Missense variants negatively correlated with neurofibromas (p = 0.005). Skeletal abnormalities were associated with whole gene deletions (p = 0.05) and frameshift variants (p = 0.006). The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations (p = 0.031), whereas Lisch nodules (p = 0.05) and endocrinological disorders (p = 0.043) were associated with the c.6855C>A; p.(Y2285*) variant. We identified novel NF1 genotype-phenotype correlations and provided an overview of known associations, supporting their potential relevance in the implementation of patient management.

13.
Cerebellum ; 20(4): 631-658, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33534089

RESUMO

Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.


Assuntos
Doenças Cerebelares , Malformações do Sistema Nervoso , Doenças Cerebelares/diagnóstico por imagem , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/diagnóstico , Humanos , Imageamento por Ressonância Magnética , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética
14.
Neurology ; 96(9): e1319-e1333, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277420

RESUMO

OBJECTIVE: Aiming to detect associations between neuroradiologic and EEG evaluations and long-term clinical outcome in order to detect possible prognostic factors, a detailed clinical and neuroimaging characterization of 67 cases of Aicardi syndrome (AIC), collected through a multicenter collaboration, was performed. METHODS: Only patients who satisfied Sutton diagnostic criteria were included. Clinical outcome was assessed using gross motor function, manual ability, and eating and drinking ability classification systems. Brain imaging studies and statistical analysis were reviewed. RESULTS: Patients presented early-onset epilepsy, which evolved into drug-resistant seizures. AIC has a variable clinical course, leading to permanent disability in most cases; nevertheless, some cases presented residual motor abilities. Chorioretinal lacunae were present in 86.56% of our patients. Statistical analysis revealed correlations between MRI, EEG at onset, and clinical outcome. On brain imaging, 100% of the patients displayed corpus callosum malformations, 98% cortical dysplasia and nodular heterotopias, and 96.36% intracranial cysts (with similar rates of 2b and 2d). As well as demonstrating that posterior fossa abnormalities (found in 63.63% of cases) should also be considered a common feature in AIC, our study highlighted the presence (in 76.36%) of basal ganglia dysmorphisms (never previously reported). CONCLUSION: The AIC neuroradiologic phenotype consists of a complex brain malformation whose presence should be considered central to the diagnosis. Basal ganglia dysmorphisms are frequently associated. Our work underlines the importance of MRI and EEG, both for correct diagnosis and as a factor for predicting long-term outcome. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that for patients with AIC, specific MRI abnormalities and EEG at onset are associated with clinical outcomes.


Assuntos
Síndrome de Aicardi/diagnóstico por imagem , Gânglios da Base/anormalidades , Adolescente , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Ingestão de Líquidos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/etiologia , Ingestão de Alimentos , Eletroencefalografia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Destreza Motora , Retina/diagnóstico por imagem , Estudos Retrospectivos , Convulsões/diagnóstico por imagem , Convulsões/etiologia , Convulsões/fisiopatologia , Resultado do Tratamento , Adulto Jovem
15.
Front Neurosci ; 14: 644, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581702

RESUMO

Mutations in the WWOX gene cause a broad range of ultra-rare neurodevelopmental and brain degenerative disorders, associated with a high likelihood of premature death in animal models as well as in humans. The encoded Wwox protein is a WW domain-containing oxidoreductase that participates in crucial biological processes including tumor suppression, cell growth/differentiation and regulation of steroid metabolism, while its role in neural development is less understood. We analyzed the exomes of a family affected with multiple pre- and postnatal anomalies, including cerebellar vermis hypoplasia, severe neurodevelopmental impairment and refractory epilepsy, and identified a segregating homozygous WWOX mutation leading to a premature stop codon. Abnormal cerebral cortex development due to a defective architecture of granular and molecular cell layers was found in the developing brain of a WWOX-deficient human fetus from this family. A similar disorganization of cortical layers was identified in lde/lde rats (carrying a homozygous truncating mutation which disrupts the active Wwox C-terminal domain) investigated at perinatal stages. Transcriptomic analyses of Wwox-depleted human neural progenitor cells showed an impaired expression of a number of neuronal migration-related genes encoding for tubulins, kinesins and associated proteins. These findings indicate that loss of Wwox may affect different cytoskeleton components and alter prenatal cortical development, highlighting a regulatory role of the WWOX gene in migrating neurons across different species.

16.
Seizure ; 80: 145-152, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32570172

RESUMO

PURPOSE: Malformations of cortical development (MCD) are a phenotypically and genetically heterogeneous group of disorders, for which the diagnostic rate of genetic testing in a clinical setting remains to be clarified. In this study we aimed to assess the diagnostic rate of germline and pathogenic variants using a custom panel in a heterogeneous group of subjects with MCD and explore genotype-phenotype correlations. METHODS: A total of 84 subjects with different MCD were enrolled. Genomic DNA was isolated from peripheral blood. Fifty-nine tartget genes were assessed using a custom next-generation sequencing (NGS) panel. RESULTS: Genetic causes were identified in one-fourth of our cohort (21.4 %). Overall, we identified 19 pathogenic or likely pathogenic single-nucleotide variants in 11 genes among 18 subjects, including PAFAH1B1 (LIS1) (n = 3), TUBA1A (n = 3), DYNC1H1 (n = 3), ACTG1 (n = 2), TUBB2B (n = 1), TUBB3 (n = 1), DCX (n = 1), FLNA (n = 1), LAMA2 (n = 1), POMGNT2 (n = 1) and VLDLR (n = 1). The diagnostic yield was higher in patients with lissencephaly/pachygyria (60 %) (p = 0.001), cobblestone malformation (50 %), and subcortical band heterotopia (SBH) (40 %). Furthermore, five out of six subjects with suspect tubulinopathies on imaging harboured pathogenic variants in tubulin genes. Overall, germline pathogenic variants were more likely to be identified if MCD were diffuse (p = 0.002) and associated with other central nervous system malformations (p = 0.029). Moderate to severe intellectual disability was also more commonly associated with pathogenic variants (p = 0.044). CONCLUSION: Customized gene panels may support the diagnostic work-up for some specific MCD, especially when these are diffuse, bilateral and associated with other brain malformations.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Lisencefalia , Malformações do Desenvolvimento Cortical , Estudos de Associação Genética , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Mutação
17.
Birth Defects Res ; 112(14): 1085-1092, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32459067

RESUMO

BACKGROUND: Several somatic mutations in TRAF7 have been reported in cancers, whereas a few germline heterozygous mutations have been recently linked to a neurodevelopmental disorder, characterized by craniofacial dysmorphisms, congenital heart defects, and digital anomalies. CASES: We report two subjects harboring de novo heterozygous missense variants in TRAF7, namely the recurrent 1964G>A(p.Arg655Gln) and the novel missense c.1204C>G(p.Leu402Val) variants. In addition to the typical hallmarks of the TRAF7-related disorder, both subjects presented with a recognizable "pear-shaped" skull due to multiple craniosynostosis, sinus pericranii, skull base/cranio-cervical junction anomalies, dysgyria, and inferior cerebellar vermis hypoplasia. CONCLUSIONS: Hence, we expand the genotypic and phenotypic spectrum of this neurodevelopmental disorder, discussing possible implications for clinical management of subjects with germline TRAF7 mutations.


Assuntos
Craniossinostoses , Transtornos do Neurodesenvolvimento , Seio Pericrânio , Encéfalo , Humanos , Crânio/diagnóstico por imagem , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral
18.
Eur J Hum Genet ; 27(8): 1254-1259, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30936465

RESUMO

De novo DDX3X variants account for 1-3% of syndromic intellectual disability (ID) in females and have been occasionally reported in males. Furthermore, somatic DDX3X variants occur in several aggressive cancers, including medulloblastoma. We report three unrelated females with severe ID, dysmorphic features, and a common brain malformative pattern characterized by malformations of cortical development, callosal dysgenesis, basal ganglia anomalies, and midbrain-hindbrain malformations. A pilocytic astrocytoma was incidentally diagnosed in Patient 1 and trigonocephaly was found in Patient 2. With the use of family based whole exome sequencing (WES), we identified three distinct de novo variants in DDX3X. These findings expand the phenotypic spectrum of DDX3X-related disorders, demonstrating unique neuroradiological features resembling those of the tubulinopathies, and support a role for DDX3X in neuronal development. Our observations further suggest a possible link between germline DDX3X variants and cancer development.


Assuntos
Neoplasias Encefálicas/genética , RNA Helicases DEAD-box/genética , Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Sequenciamento do Exoma
19.
Neurogenetics ; 20(2): 103-108, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30924036

RESUMO

Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) is a non-catalytic component of the multi-tRNA synthetase complex which catalyzes the ligation of amino acids to the correct tRNAs. Pathogenic variants in several aminoacyl-tRNA synthetases genes have been linked to various neurological disorders, including leukodystrophies and pontocerebellar hypoplasias (PCH). To date, loss-of-function variants in AIMP1 have been associated with hypomyelinating leukodystrophy-3 (MIM 260600). Here, we report a novel frameshift AIMP1 homozygous variant (c.160delA,p.Lys54Asnfs) in a child with pontocerebellar hypoplasia and simplified gyral pattern, a phenotype not been previously described with AIMP1 variants, thus expanding the phenotypic spectrum. AIMP1 should be included in diagnostic PCH gene panels.


Assuntos
Doenças Cerebelares/genética , Citocinas/genética , Predisposição Genética para Doença , Proteínas de Neoplasias/genética , Doença de Pelizaeus-Merzbacher/genética , Proteínas de Ligação a RNA/genética , Citosol/metabolismo , Evolução Fatal , Mutação da Fase de Leitura , Deleção de Genes , Heterozigoto , Homozigoto , Humanos , Lactente , Masculino , Mitocôndrias/metabolismo , Bainha de Mielina/metabolismo , Fenótipo , Biossíntese de Proteínas , Desnaturação Proteica , Dobramento de Proteína , Isoformas de Proteínas
20.
J Neurol ; 266(5): 1167-1181, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30796522

RESUMO

OBJECTIVES: To describe the neurological phenotype of children with prenatal diagnosis of agenesis of corpus callosum (ACC) and interhemispheric cysts associated with malformations of cortical development (MCD). METHODS: We reviewed the neuroimaging, neurologic, EEG, and genetic data of 36 patients (21 males, mean age 7 years) with ACC and interhemispheric cysts. Associations were tested with Chi-squared and Fisher exact tests. RESULTS: According to the 2001 Barkovich classification, we found 4 type 1c (11.1%), 6 type 2a (16.6%), 18 type 2b (50%, 6/18 girls with Aicardi syndrome), and 9 type 2c cysts (22.2%). EEG showed specific epileptic activity in 27/36 patients (75%). Epilepsy was diagnosed in 16 subjects (16/36, 44.4%), including all Aicardi patients, and was associated with cognitive impairment (p = 0.032). Severe intellectual disability and epilepsy were associated with type 2b cysts, always due to Aicardi patients (p < 0.05). After excluding Aicardi patients, all subjects with type 2b cysts had mild neurological phenotype. Patients with 2a and 2c cysts more frequently had normal cognition (83.3% and 62.5% of cases, respectively). Patients with type 1c cyst mostly had mild/moderate cognitive impairment. Severe neurologic deficits were associated with 1c cysts and 2b cysts with Aicardi syndrome (p < 0.05). Multilobar and/or bilateral MCD were associated with severe neurological and epileptic phenotypes (p < 0.05). CONCLUSION: Once excluded Aicardi syndrome, most patients with ACC and interhemispheric cysts have a mild clinical phenotype characterized by borderline/normal cognition and minor neurological signs. Despite the high prevalence of EEG epileptic abnormalities, epilepsy in these cases is infrequent and usually responsive to antiepileptic drugs.


Assuntos
Agenesia do Corpo Caloso/complicações , Cistos/complicações , Malformações do Desenvolvimento Cortical/complicações , Agenesia do Corpo Caloso/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Canadá , Criança , Cistos/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Imageamento Tridimensional , Itália , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Entrevista Psiquiátrica Padronizada , Exame Neurológico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA