Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Eur J Med Res ; 29(1): 269, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704602

RESUMO

HHT has emerged as a notable compound in the realm of cancer treatment, particularly for hematological malignancies. Its multifaceted pharmacological properties extend beyond traditional applications, warranting an extensive review of its mechanisms and efficacy. This review aims to synthesize comprehensive insights into the efficacy of HHT in treating hematological malignancies, diverse cancers, and other biomedical applications. It focuses on elucidating the molecular mechanisms, therapeutic potential, and broader applications of HHT. A comprehensive search for peer-reviewed papers was conducted across various academic databases, including ScienceDirect, Web of Science, Scopus, American Chemical Society, Google Scholar, PubMed/MedLine, and Wiley. The review highlights HHT's diverse mechanisms of action, ranging from its role in leukemia treatment to its emerging applications in managing other cancers and various biomedical conditions. It underscores HHT's influence on cellular processes, its efficacy in clinical settings, and its potential to alter pathological pathways. HHT demonstrates significant promise in treating various hematological malignancies and cancers, offering a multifaceted approach to disease management. Its ability to impact various physiological pathways opens new avenues for therapeutic applications. This review provides a consolidated foundation for future research and clinical applications of HHT in diverse medical fields.


Assuntos
Neoplasias Hematológicas , Mepesuccinato de Omacetaxina , Humanos , Neoplasias Hematológicas/tratamento farmacológico , Mepesuccinato de Omacetaxina/uso terapêutico , Mepesuccinato de Omacetaxina/farmacologia , Neoplasias/tratamento farmacológico , Animais
3.
Environ Sci Pollut Res Int ; 31(16): 23549-23567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421541

RESUMO

Arsenic (As) contamination of rice grain poses a serious threat to human health. Therefore, it is crucial to reduce the bioavailability of As in the soil and its accumulation in rice grains to ensure the safety of food and human health. In this study, mango (Mangifera indica) leaf-derived biochars (MBC) were synthesized and modified with iron (Fe) to produce FeMBC. In this study, 0.5 and 1% (w/w) doses of MBC and FeMBC were used. The results showed that 1% FeMBC enhanced the percentage of filled grains/panicle and biomass yield by 17 and 27%, respectively, compared to the control. The application of 0.5 and 1% FeMBC significantly (p < 0.05) reduced bioavailable soil As concentration by 33 and 48%, respectively, in comparison to the control. The even higher As flux in the control group as compared to the biochar-treated groups indicates the lower As availability to biochar-treated rice plant. The concentration of As in rice grains was reduced by 6 and 31% in 1% MBC and 1% FeMBC, respectively, compared to the control. The reduction in As concentration in rice grain under 1% FeMBC was more pronounced due to reduced bioavailability of As and enhanced formation of Fe-plaque. This may restrict the entry of As through the rice plant. The concentrations of micronutrients (such as Fe, Zn, Se, and Mn) in brown rice were also improved after the application of both MBC and FeMBC in comparison to the control. This study indicates that the consumption of parboiled rice reduces the health risk associated with As compared to cooked sunned rice. It emphasizes that 1% MBC and 1% FeMBC have great potential to decrease the uptake of As in rice grains.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Humanos , Ferro/análise , Oryza/metabolismo , Arsênio/análise , Carvão Vegetal/metabolismo , Solo , Poluentes do Solo/análise , Cádmio/análise
4.
Int J Med Mushrooms ; 26(1): 27-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305260

RESUMO

In humans, a wide range of health disorders have been induced due to an imbalanced metabolism and an excess generation of reactive oxygen species (ROS). Different biological properties found in mushrooms seem to be the reason for their customary use as a favourite delicacy. Therefore, exploration of wild edible mushrooms as a source of various biological compounds is gaining much importance today. Amanita konajensis, one of the underutilized macrofungi popularly consumed in Eastern India, demands a systematic study of its medicinal values. The study aims to explore the myco-chemical contents of A. konajensis ethanolic extract (EtAK1) and screen their antioxidant potency through various in vitro assays. GC-MS analysis identified the chemical components of EtAK1. Further, structure-based virtual screening of the identified compounds was analysed for drug-like properties and molecular docking with the human p38 MAPK protein, a potent targeting pathway for human lung cancer. The morpho-molecular features proved the authenticity of the collected mushroom. The screening assays showed that EtAK1 was abundant in flavonoids, followed by phenolics, ß-carotene, and lycopene, and had strong antioxidant activity with EC50 values of 640-710 µg/mL. The GC-MS analyses of EtAK1 identified the occurrence of 19 bioactive compounds in the mushroom. In silico analysis revealed that anthraergostatetraenol p-chlorobenzoate, one of the compounds identified, displayed high binding affinity (ΔG = -10.6 kcal/mol) with human p38 MAPK. The outcome of this study will pave the way for the invention of myco-medicine using A. konajensis, which may lead to a novel drug for human lung cancer.


Assuntos
Antioxidantes , Neoplasias Pulmonares , Humanos , Antioxidantes/química , Simulação de Acoplamento Molecular , Cromatografia Gasosa-Espectrometria de Massas , Amanita , Proteínas Quinases p38 Ativadas por Mitógeno
6.
Fitoterapia ; 172: 105681, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743029

RESUMO

Resistance to apoptosis stands as a roadblock to the successful pharmacological execution of anticancer drug effect. A comprehensive insight into apoptotic signaling pathways and an understanding of the mechanisms of apoptosis resistance are crucial to unveil new drug targets. At this juncture, researchers are heading towards natural sources in particular, mushroom as their potential drugs leads to being the reliable source of potent bioactive compounds. Given the continuous increase in cancer cases, the potent anticancer efficacy of mushrooms has inevitably become a fascinating object to researchers due to their higher safety margin and multitarget. This review aimed to collect and summarize all the available scientific data on mushrooms from their extracts to bioactive molecules in order to suggest their anticancer attributes via a mitochondrion -mediated intrinsic signaling mechanism. Compiled data revealed that bioactive components of mushrooms including polysaccharides, sterols and terpenoids as well as extracts prepared using 15 different solvents from 53 species could be effective in the supportive treatment of 20 various cancers. The underlying therapeutic mechanisms of the studied mushrooms are explored in this review through diverse and complementary investigations: in vitro assays, pre-clinical studies and clinical randomized controlled trials. The processes mainly involved were ROS production, mitochondrial membrane dysfunction, and action of caspase 3, caspase 9, XIAP, cIAP, p53, Bax, and Bcl-2. In summary, the study provides facts pertaining to the potential beneficial effect of mushroom extracts and their active compounds against various types of cancer and is shedding light on the underlying targeted signaling pathways.


Assuntos
Agaricales , Antineoplásicos , Neoplasias , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Mitocôndrias , Apoptose , Transdução de Sinais , Antineoplásicos/farmacologia
7.
Phytother Res ; 38(2): 592-619, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37929761

RESUMO

Sterols, including ß-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of ß-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. ß-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of ß-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of ß-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of ß-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of ß-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of ß-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. ß-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of ß-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of ß-sitosterol-mediated anticancer activities remains limited. ß-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, ß-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of ß-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on ß-sitosterol as a potent superfood in combating cancer.


Assuntos
Leucemia , Fitosteróis , Neoplasias da Próstata , Humanos , Masculino , Animais , Extratos Vegetais/farmacologia , Sitosteroides/farmacologia , Sitosteroides/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Etnofarmacologia
8.
Biodegradation ; 35(3): 249-279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37665521

RESUMO

To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.


Assuntos
Plásticos , Poliuretanos , Plásticos/metabolismo , Polímeros , Polietileno/metabolismo , Biodegradação Ambiental , Alternaria/metabolismo
9.
Physiol Mol Biol Plants ; 29(10): 1591-1603, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076773

RESUMO

The present study evaluates the alleviation of polyethylene glycol (PEG) mediated osmotic stress by exogenous spermine (SP) application on seeds of Lens culinaris. Seeds were soaked overnight with SP (0.05 M) and PEG (10%) separately. Third set was prepared by combined treatment with SP (0.05 M) and PEG (10%). Further, various physiological parameters, defense enzymes, phenol, flavonoid, nitric oxide (NO), proline content, chromosomal abnormality studies etc. was conducted after 5 days of incubation. PEG application significantly hampered the seed germination, root length, shoot length, relative water content and vigour index. Application of PEG induced electrolytic leakage in root cells. PEG application also significantly reduced the activities of different defense parameters viz. peroxidase, polyphenol oxidase, phenylalanine ammonia lyase and ß-1,3 glucanase, total phenol and flavonoid accumulation over control. Reactive oxygen species, lipid peroxidation, cell death was found significantly high in PEG treated sets. However, NO level has been significantly decreased by PEG treatment. Cytological studies showed reduced mitotic index and highest abnormalities under osmotic stress. Contrary to that, application of SP either alone or in combination with PEG showed improved responses of aforesaid defense parameters compared to control and solely PEG treated sets. Interestingly, cytological abnormalities were also reduced in SP treated roots. Overall, these results suggests that SP application on seeds reduced the PEG induced damage and intricately improved the defense mechanisms which might help to fight against oxidative stress.

10.
Int J Med Mushrooms ; 25(11): 53-63, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37831512

RESUMO

Ganoderma is a medicinally important mushroom and has been used since ancient times. However, mostly G. lucidum has been used for therapeutic purposes, in form of tea, dietary and drug supplements but other species of Ganoderma are still remaining underexploited. This study is the first approach to valorize Ganoderma teas prepared from different wild species of Ganoderma other than G. lucidum with respect to both phytochemically and therapeutically through investigation of their phytochemical, carbohydrate contents and exploring their antioxidant activity. Phytochemical contents such as phenol and flavonoids were quantified using spectrophotometry methods. The carbohydrate content of the teas was estimated by phenol sulphuric acid method. The biochemical analysis revealed the teas contained a notable amount of phenolic compounds ranging from 19.15 to 40.2 µg GAE/mg of extract and also showed significant content of flavonoids. Further, antioxidant potential in terms of DPPH and ABTS radical scavenging ability and total antioxidant capacity was also evaluated. According to the results, G. resinaceum tea showed better potential in scavenging DPPH (EC50 36 ug/mL) and ABTS radicals (EC50 3 9 ug/mL) whereas the least effect was shown for the tea of G. ahmedi. Therefore, tea showing the best results, i.e. G. resinaceum tea, was also analyzed for cytotoxicity on breast cancer cells. It was found that the tea made from G. resinaceum inhibited cellular growth and proliferation in a dose-dependent manner with maximum growth inhibition (61%) observed at the highest concentration of 2.3 mg/mL. The presence of a greater quantity of carbohydrates in G. resinaceum tea also justified the remarkable anticancer potential of the tea. Overall, our findings indicated that a few wild species of Ganoderma other than G. lucidum have great potential to be valued as a healthy beverage with immense therapeutic benefits.


Assuntos
Antineoplásicos , Ganoderma , Antioxidantes/química , Ganoderma/química , Flavonoides/análise , Fenóis/análise , Antineoplásicos/farmacologia , Antineoplásicos/análise , Compostos Fitoquímicos , Chá , Carboidratos , Extratos Vegetais/química
11.
Int J Med Mushrooms ; 25(7): 13-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585313

RESUMO

Macrocybe lobayensis owe popularity in several traditional cultures not only for delectable taste but also for its nutraceutical profile conveying great health benefits. Previous investigations have enumerated several bioactivities of the valuable mushroom such as antioxidant, anti-ageing, immune-modulation, and anti-tumor properties where polysaccharides played the key role. Macrofungi polymers are generally isolated by the conventional hot water process discarding the residue which still contains plenty of therapeutic components. The present study thus aimed to re-use such leftover of the edible macrofungus by immersing it in NaOH solution at high temperature supporting circular economy. Consequently a polysaccharide fraction, namely ML-HAP, was isolated that was found to be consisted of a homogenous heteropolysaccharide with molecular weight of ~ 128 kDa and ß-glucan as the chief ingredient as evident by spectroscopy, gel-permeation chromatography, high performance thin-layer chromatography, and Fourier transform infrared. Antioxidant activity assays revealed that the macromolecules possess good radical scavenging, metal ion binding and reducing power. Nevertheless, strong immune-potentiation was also recorded as the extract triggered murine macrophage cell viability, pinocytosis, nitric oxide production and morpho-dynamics within 24 h where the best effect was executed at the level of 100 µg/mL. Altogether, the polysaccharides extracted from M. lobayensis exhibited a potent application prospect in functional food, pharmaceutical, nutraceutical and health care industries that could raise economic value of the underexplored mushroom.


Assuntos
Agaricales , Basidiomycota , Animais , Camundongos , Álcalis , Frutas/metabolismo , Agaricales/metabolismo , Polissacarídeos/química , Antioxidantes/química , Basidiomycota/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
12.
J Fungi (Basel) ; 9(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675933

RESUMO

Termite mushrooms have been classified to the genus Termitomyces, family Lyophyllaceae, order Agaricales. These mushrooms form a mutualistic association with termites in the subfamily Macrotermitinae. In fact, all Termitomyces species are edible and have unique food value attributed to their texture, flavour, nutrient content, and beneficial mediational properties. Additionally, Termitomyces have been recognized for their ethno-medicinal importance in various indigenous communities throughout Asia and Africa. Recent studies on Termitomyces have indicated that their bioactive compounds have the potential to fight against certain human diseases such as cancer, hyperlipidaemia, gastroduodenal diseases, and Alzheimer's. Furthermore, they possess various beneficial antioxidant and antimicrobial properties. Moreover, different enzymes produced from Termitomyces have the potential to be used in a range of industrial applications. Herein, we present a brief review of the current findings through an overview of recently published literature involving taxonomic updates, diversity, distribution, ethno-medicinal uses, nutritional value, medicinal importance, and industrial implementations of Termitomyces, as well as its socioeconomic importance.

13.
Z Naturforsch C J Biosci ; 78(1-2): 9-25, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36069757

RESUMO

Santalum genus belongs to the family of Santalaceae, widespread in India, Australia, Hawaii, Sri Lanka, and Indonesia, and valued as traditional medicine, rituals and modern bioactivities. Sandalwood is reported to possess a plethora of bioactive compounds such as essential oil and its components (α-santalol and ß-santalol), phenolic compounds and fatty acids. These bioactives play important role in contributing towards biological activities and health-promoting effects in humans. Pre-clinical and clinical studies have shown the role of sandalwood extract as antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, neuroleptic, antihyperglycemic, antihyperlipidemic, and anticancer activities. Safety studies on sandalwood essential oil (EO) and its extracts have proven them as a safe ingredient to be utilized in health promotion. Phytoconstituents, bioactivities and traditional uses established sandalwood as one of the innovative materials for application in the pharma, food, and biomedical industry.


Assuntos
Óleos Voláteis , Santalum , Humanos , Santalum/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
14.
Oxid Med Cell Longev ; 2022: 5628601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105486

RESUMO

Artemisia plants are traditional and ethnopharmacologically used to treat several diseases and in addition in food, spices, and beverages. The genus is widely distributed in all continents except the Antarctica, and traditional medicine has been used as antimalarial, antioxidant, anticancer, antinociceptive, anti-inflammatory, and antiviral agents. This review is aimed at systematizing scientific data on the geographical distribution, chemical composition, and pharmacological and toxicological profiles of the Artemisia genus. Data from the literature on Artemisia plants were taken using electronic databases such as PubMed/MEDLINE, Scopus, and Web of Science. Selected papers for this updated study included data about phytochemicals, preclinical pharmacological experimental studies with molecular mechanisms included, clinical studies, and toxicological and safety data. In addition, ancient texts and books were consulted. The essential oils and phytochemicals of the Artemisia genus have reported important biological activities, among them the artemisinin, a sesquiterpene lactone, with antimalarial activity. Artemisia absinthium L. is one of the most famous Artemisia spp. due to its use in the production of the absinthe drink which is restricted in most countries because of neurotoxicity. The analyzed studies confirmed that Artemisia plants have many traditional and pharmacological applications. However, scientific data are limited to clinical and toxicological research. Therefore, further research is needed on these aspects to understand the full therapeutic potential and molecular pharmacological mechanisms of this medicinal species.


Assuntos
Antimaláricos , Artemisia , Óleos Voláteis , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisia/química , Medicina Tradicional , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
15.
J Recept Signal Transduct Res ; 42(6): 599-607, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125981

RESUMO

PI3K/AKT/mTOR pathway is one of the frequently disrupted signaling pathways in renal cell carcinoma (RCC) that plays a significant role in tumor formation, disease progression and therapeutic resistance. Therefore, novel natural molecules targeting the critical proteins of this pathway will provide the best alternative to existing drugs, which are toxic and develops resistance. Recent studies have recognized the anti-cancer therapeutic potential of mycocompounds. The current study is focused on screening various mycocompounds from Astraeus hygrometricus against key cancer signaling proteins phosphoinositide 3-kinase (PI3K), protein kinase B, PKB (AKT1) and mammalian target of rapamycin (mTOR). We also studied in-silico cancer cells cytotoxicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) profiles to elucidate the molecular mechanism against RCC and also to uncover the pharmacokinetic profile of these compounds. Astrakurkurone and Ergosta-4,6, 8-(14) 22-tetraene-3-one were the two most efficacious compounds with highest interaction scores and bonding. These compounds were both active against RCC4 and VMRC-RCZ cell lines of RCC. The ADME profiles of both were satisfactory based on druglikeness and bioavailability score criteria. Thus, this proposed study identified astrakurkurone and ergosta-4,6, 8-(14) 22-tetraene-3-one as potential anticancer drug candidates, and provides comparative structural insight into their binding to the 3 protein kinases.


Assuntos
Produtos Biológicos , Carcinoma de Células Renais , Fungos , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Neoplasias Renais/patologia , Fosfatidilinositol 3-Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Fungos/química , Produtos Biológicos/farmacologia
16.
Environ Pollut ; 313: 120066, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067973

RESUMO

Arsenic (As), a metalloid is a class I carcinogen and is a major problem in various parts of the world. Food crops are severely affected due to As poisoning and suffer from low germination, yield and disfiguration of morphological and anatomical traits. To attenuate such adverse effects and tone down As uptake by plants, the present study attempts to explore the role of K-humate (KH) in alleviation of As toxicity in rice. KH was administered in the growth media containing 800 ppb As (III) at varying doses to observe the stress alleviating capacity of the amendment. Five treatments were investigated, viz: (a) 800 ppb As (control), (b) 800 ppb As + 25 ppm KH, (c) 800 ppb As + 50 ppm KH, (d) 800 ppb As + 75 ppm KH and (e) 800 ppb As + 100 ppm KH. The results of the amendment administration were noted at 14 days after seeding (DAS). Application of KH significantly improved germination percentage, vigour indices and chlorophyll content by reducing the oxidative stress, antioxidant and antioxidant enzyme activities under As stress. In vivo detection of reactive oxygen species (ROS) using DCF-2DA fluorescent dye and scanning electron microscope (SEM) study of root further depicted that KH application effectively reduced ROS formation and improved root anatomical structure under As stress, respectively. Gradually increasing concentrations of KH was capable of decreasing the bioavailability of As to the rice plants, thus minimizing toxic effect of the metalloid.


Assuntos
Arsênio , Oryza , Antioxidantes/metabolismo , Arsênio/análise , Disponibilidade Biológica , Carcinógenos , Clorofila , Corantes Fluorescentes , Germinação , Oryza/química , Raízes de Plantas/metabolismo , Potássio , Espécies Reativas de Oxigênio , Plântula
17.
Front Biosci (Landmark Ed) ; 27(6): 197, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35748273

RESUMO

Tradescantia is a genus of herbaceous and perennial plants belonging to the Commelinaceae family and organized into three infrageneric classifications and 12 sections. More than 80 species within the genus have been used for centuries for medicinal purposes. Phytochemical compounds (from various species of the genus) such as coumarins, alkaloids, saponins, flavonoids, phenolics, tannins, steroids and terpenoids have recently been characterized and described with antioxidant, cytotoxic, anti-inflammatory, anticancer or antimicrobial properties. The objective of this review is to describe the different aspects of the genus Tradescantia, including its botanical characteristics, traditional uses, phytochemical composition, biological activities, and safety aspects.


Assuntos
Medicina Tradicional , Tradescantia , Antioxidantes/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-35251206

RESUMO

Urtica dioica belongs to the Urticaceae family and is found in many countries around the world. This plant contains a broad range of phytochemicals, such as phenolic compounds, sterols, fatty acids, alkaloids, terpenoids, flavonoids, and lignans, that have been widely reported for their excellent pharmacological activities, including antiviral, antimicrobial, antihelmintic, anticancer, nephroprotective, hepatoprotective, cardioprotective, antiarthritis, antidiabetic, antiendometriosis, antioxidant, anti-inflammatory, and antiaging effects. In this regard, this review highlights fresh insight into the medicinal use, chemical composition, pharmacological properties, and safety profile of U. dioica to guide future works to thoroughly estimate their clinical value.

19.
Chem Biol Interact ; 352: 109776, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34906553

RESUMO

Boosting or suppressing our immune system represents an attractive adjunct in the treatment of infections including SARS-CoV-2, cancer, AIDS, malnutrition, age related problems and some inflammatory disorders. Thus, there has been a growing interest in exploring and developing novel drugs, natural or synthetic, that can manipulate our defence mechanism. Many of such studies, reported till date, have been designed to explore effect of the therapeutic on function of macrophages, being a key component in innate immune system. Indeed, RAW264.7, J774A.1, THP-1 and U937 cell lines act as ideal model systems for preliminary investigation and selection of dose for in vivo studies. Several bioassays have been standardized so far where many techniques require high throughput instruments, cost effective reagents and technical assistance that may hinder many scholars to perform a method demanding compilation of available protocols. In this review, we have taken an attempt for the first time to congregate commonly used in vitro immune-modulating techniques explaining their principles. The study detected that among about 40 different assays and more than 150 sets of primers, the methods of cell proliferation by MTT, phagocytosis by neutral red, NO detection by Griess reaction and estimation of expression of TLRs, COX-2, iNOS, TNF-α, IL-6 and IL-1ß by PCR have been the most widely used to screen the therapeutics under investigation.


Assuntos
Imunidade Inata/imunologia , Imunomodulação/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Inflamação/imunologia , Fagocitose/imunologia
20.
Environ Pollut ; 293: 118561, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843851

RESUMO

Arsenic (As) in rice is posing a serious threat worldwide and consumption of As contaminated rice by human is causing health risks. A pot experiment with different levels of sulfate dosage (0, 20, 40, 60 and 80 mg/kg) was set up in this study to explore the influence of sulfate fertilizer on rice plant growth, yield, and As accumulation in rice grain. Apart from As bioaccumulation in rice grains, the As fraction of cooked rice was quantified, and the health risks associated with cooked rice consumption were also investigated. The sulfate application significantly (p ≤ 0.05) enhanced the chlorophyll, tiller number, grains per panicle, grain and biomass yield under As stressed condition. The sulfate application also reduced the oxidative stress and antioxidant activity in rice plants. Sulfate fertigation improved the accumulation of total sulfur (S) and reduced the uptake and translocation of As in rice plants. Arsenic concentration in rice grain was reduced by 50.1% in S80 treatment (80 mg of sulfate/kg of soil) as compared to S0 set. The reduction percentage of As in cooked parboiled and sunned rice with correspond to raw rice ranged from 55.9 to 74% and 40.3-60.7%, respectively. However, the sulfate application and cooking of parboiled rice reduced the potential non-cancer and cancer risk as compared to sunned rice. The S80 treatment and cooking of parboiled rice reduce the As exposure for both children and adults by 51% as compared to cooked sunned rice under S80 treatment and this trend was similar for all treatments. Therefore, sulfate application in soil can be recommended to produce safer rice grains and subsequent cooking of parboiled rice grain with low-As contaminated water need to be done to avoid any potential health risk in As endemic areas.


Assuntos
Arsênio , Oryza , Arsênio/análise , Bioacumulação , Criança , Culinária , Contaminação de Alimentos/análise , Humanos , Medição de Risco , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA