Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Front Pharmacol ; 14: 1152314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188266

RESUMO

Introduction: Surgery and radiotherapy are key cancer treatments and the leading causes of damage to the lymphatics, a vascular network critical to fluid homeostasis and immunity. The clinical manifestation of this damage constitutes a devastating side-effect of cancer treatment, known as lymphoedema. Lymphoedema is a chronic condition evolving from the accumulation of interstitial fluid due to impaired drainage via the lymphatics and is recognised to contribute significant morbidity to patients who survive their cancer. Nevertheless, the molecular mechanisms underlying the damage inflicted on lymphatic vessels, and particularly the lymphatic endothelial cells (LEC) that constitute them, by these treatment modalities, remain poorly understood. Methods: We used a combination of cell based assays, biochemistry and animal models of lymphatic injury to examine the molecular mechanisms behind LEC injury and the subsequent effects on lymphatic vessels, particularly the role of the VEGF-C/VEGF-D/VEGFR-3 lymphangiogenic signalling pathway, in lymphatic injury underpinning the development of lymphoedema. Results: We demonstrate that radiotherapy selectively impairs key LEC functions needed for new lymphatic vessel growth (lymphangiogenesis). This effect is mediated by attenuation of VEGFR-3 signalling and downstream signalling cascades. VEGFR-3 protein levels were downregulated in LEC that were exposed to radiation, and LEC were therefore selectively less responsive to VEGF-C and VEGF-D. These findings were validated in our animal models of radiation and surgical injury. Discussion: Our data provide mechanistic insight into injury sustained by LEC and lymphatics during surgical and radiotherapy cancer treatments and underscore the need for alternative non-VEGF-C/VEGFR-3-based therapies to treat lymphoedema.

2.
Commun Biol ; 4(1): 878, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267311

RESUMO

Angiogenesis underlies development, physiology and pathogenesis of cancer, eye and cardiovascular diseases. Inhibiting aberrant angiogenesis using anti-angiogenic therapy (AAT) has been successful in the clinical treatment of cancer and eye diseases. However, resistance to AAT inevitably occurs and its molecular basis remains poorly understood. Here, we uncover molecular modifiers of the blood endothelial cell (EC) response to a widely used AAT bevacizumab by performing a pooled genetic screen using three-dimensional microcarrier-based cell culture and CRISPR-Cas9. Functional inhibition of the epigenetic reader BET family of proteins BRD2/3/4 shows unexpected mitigating effects on EC survival and/or proliferation upon VEGFA blockade. Moreover, transcriptomic and pathway analyses reveal an interaction between epigenetic regulation and anti-angiogenesis, which may affect chromosomal structure and activity in ECs via the cell cycle regulator CDC25B phosphatase. Collectively, our findings provide insight into epigenetic regulation of the EC response to VEGFA blockade and may facilitate development of quality biomarkers and strategies for overcoming resistance to AAT.


Assuntos
Inibidores da Angiogênese/genética , Bevacizumab/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epigênese Genética , Sangue , Células Endoteliais/efeitos dos fármacos
3.
Biomolecules ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572413

RESUMO

Abstract: Tumour angiogenesis and lymphangiogenesis are hallmarks of cancer and have been associated with tumour progression, tumour metastasis and poor patient prognosis. Many factors regulate angiogenesis and lymphangiogenesis in cancer including non-coding RNAs which are a category of RNAs that do not encode proteins and have important regulatory functions at transcriptional and post-transcriptional levels. Non-coding RNAs can be encapsulated in extracellular vesicles called exosomes which are secreted by tumour cells or other cells in the tumour microenvironment and can then be taken up by the endothelial cells of blood vessels and lymphatic vessels. The "delivery" of these non-coding RNAs to endothelial cells in tumours can facilitate tumour angiogenesis and lymphangiogenesis. Here we review recent findings about exosomal non-coding RNAs, specifically microRNAs and long non-coding RNAs, which regulate tumour angiogenesis and lymphangiogenesis in cancer. We then focus on the potential use of these molecules as cancer biomarkers and opportunities for exploiting ncRNAs for the treatment of cancer.


Assuntos
Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfangiogênese/genética , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/genética , RNA não Traduzido/metabolismo , Humanos
4.
Cancer Res ; 79(7): 1558-1572, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709930

RESUMO

Metastasis via the lymphatic vasculature is an important step in cancer progression. The formation of new lymphatic vessels (lymphangiogenesis), or remodeling of existing lymphatics, is thought to facilitate the entry and transport of tumor cells into lymphatic vessels and on to distant organs. The migration of lymphatic endothelial cells (LEC) toward guidance cues is critical for lymphangiogenesis. While chemokines are known to provide directional navigation for migrating immune cells, their role in mediating LEC migration during tumor-associated lymphangiogenesis is not well defined. Here, we undertook gene profiling studies to identify chemokine-chemokine receptor pairs that are involved in tumor lymphangiogenesis associated with lymph node metastasis. CCL27 and CCL28 were expressed in tumor cells with metastatic potential, while their cognate receptor, CCR10, was expressed by LECs and upregulated by the lymphangiogenic growth factor VEGFD and the proinflammatory cytokine TNFα. Migration assays demonstrated that LECs are attracted to both CCL27 and CCL28 in a CCR10-dependent manner, while abnormal lymphatic vessel patterning in CCR10-deficient mice confirmed the significant role of CCR10 in lymphatic patterning. In vivo analyses showed that LECs are recruited to a CCL27 or CCL28 source, while VEGFD was required in combination with these chemokines to enable formation of coherent lymphatic vessels. Moreover, tumor xenograft experiments demonstrated that even though CCL27 expression by tumors enhanced LEC recruitment, the ability to metastasize was dependent on the expression of VEGFD. These studies demonstrate that CCL27 and CCL28 signaling through CCR10 may cooperate with inflammatory mediators and VEGFD during tumor lymphangiogenesis. SIGNIFICANCE: The study shows that the remodeling of lymphatic vessels in cancer is influenced by CCL27 and CCL28 chemokines, which may provide a future target to modulate metastatic spread.


Assuntos
Movimento Celular , Quimiocinas CC/metabolismo , Células Endoteliais/citologia , Vasos Linfáticos/citologia , Transdução de Sinais , Animais , Feminino , Humanos , Ligantes , Linfangiogênese , Metástase Linfática , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
5.
Front Immunol ; 10: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761143

RESUMO

The debilitating condition known as secondary lymphedema frequently occurs after lymphadenectomy and/or radiotherapy for the treatment of cancer. These therapies can damage lymphatic vessels leading to edema, fibrosis, inflammation and dysregulated adipogenesis, which result in profound swelling of an affected limb. Importantly, lymphedema patients often exhibit impaired immune function which predisposes them to a variety of infections. It is known that lymphadenectomy can compromise the acquisition of adaptive immune responses and antibody production; however the cellular mechanisms involved are poorly understood. Here we discuss recent progress in revealing the cellular and molecular mechanisms underlying poor immune function in secondary lymphedema, which has indicated a key role for regulatory T cells in immunosuppression in this disease. Furthermore, the interaction of CD4+ T cells and macrophages has been shown to play a role in driving proliferation of lymphatic endothelial cells and aberrant lymphangiogenesis, which contribute to interstitial fluid accumulation in lymphedema. These new insights into the interplay between lymphatic vessels and the immune system in lymphedema will likely provide opportunities for novel therapeutic approaches designed to improve clinical outcomes in this problematic disease.


Assuntos
Linfangiogênese/imunologia , Vasos Linfáticos/imunologia , Linfedema/imunologia , Animais , Comunicação Celular , Modelos Animais de Doenças , Humanos , Tolerância Imunológica , Imunidade Humoral , Inflamação/imunologia , Linfonodos/imunologia , Macrófagos/imunologia , Camundongos , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia
6.
Trends Cancer ; 4(8): 519-522, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30064660

RESUMO

Even though we have known for over 250 years that cancers spread to regional lymph nodes (LNs) and distant organs, the fundamental question of which anatomical routes are taken by tumor cells has remained a mystery. Two recently published papers in Science, by Pereira et al. and Brown et al., directly address this important issue in tumor biology by assessing the capacity of tumor cells in LNs to spread to distant sites.


Assuntos
Linfonodos , Animais , Humanos , Metástase Linfática , Camundongos
7.
Curr Opin Immunol ; 53: 64-73, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29698919

RESUMO

While the link between the lymphatic system and the metastatic spread of cancer is centuries old, understanding of the underlying mechanisms is still evolving. Lymphatic vessels provide a route for tumour cells to reach regional lymph nodes (LNs), which is prognostic of distant organ metastasis and poor survival. However, genomic analyses of metastatic cancer now reveal complex patterns of dissemination. The lymphatic endothelial cells lining lymphatics respond to molecular cues from the tumour microenvironment, mediating growth and remodelling of lymphatic vessels at the primary tumour, draining LNs and distant premetastatic niches. Recent studies emphasise that this not only supports metastasis but also influences antitumour immunity. Understanding the complex interactions between tumour cells, the immune system and lymphatics will be essential to inform developing therapeutic and prognostic approaches to cancer.


Assuntos
Sistema Imunitário , Vasos Linfáticos/imunologia , Metástase Neoplásica , Neoplasias/imunologia , Animais , Humanos , Imunidade , Invasividade Neoplásica , Microambiente Tumoral , Remodelação Vascular
8.
Biomolecules ; 8(1)2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300337

RESUMO

Blood vessels and lymphatic vessels are located in many tissues and organs throughout the body, and play important roles in a wide variety of prevalent diseases in humans. Vascular endothelial growth factor-D (VEGF-D) is a secreted protein that can promote the remodeling of blood vessels and lymphatics in development and disease. Recent fundamental and translational studies have provided insight into the molecular mechanisms by which VEGF-D exerts its effects in human disease. Hence this protein is now of interest as a therapeutic and/or diagnostic target, or as a potential therapeutic agent, in a diversity of indications in cardiovascular medicine, cancer and the devastating pulmonary condition lymphangioleiomyomatosis. This has led to clinical trial programs to assess the effect of targeting VEGF-D signaling pathways, or delivering VEGF-D, in angina, cancer and ocular indications. This review summarizes our understanding of VEGF-D signaling in human disease, which is largely based on animal disease models and clinicopathological studies, and provides information about the outcomes of recent clinical trials testing agonists or antagonists of VEGF-D signaling.


Assuntos
Doenças Cardiovasculares/metabolismo , Pneumopatias/metabolismo , Doenças Linfáticas/metabolismo , Neoplasias/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Neovascularização Fisiológica , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Fator D de Crescimento do Endotélio Vascular/genética
9.
Sci Signal ; 10(499)2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974649

RESUMO

Lymphatic vessels constitute a specialized vasculature that is involved in development, cancer, obesity, and immune regulation. The migration of lymphatic endothelial cells (LECs) is critical for vessel growth (lymphangiogenesis) and vessel remodeling, processes that modify the lymphatic network in response to developmental or pathological demands. Using the publicly accessible results of our genome-wide siRNA screen, we characterized the migratome of primary human LECs and identified individual genes and signaling pathways that regulate LEC migration. We compared our data set with mRNA differential expression data from endothelial and stromal cells derived from two in vivo models of lymphatic vessel remodeling, viral infection and contact hypersensitivity-induced inflammation, which identified genes selectively involved in regulating LEC migration and remodeling. We also characterized the top candidates in the LEC migratome in primary blood vascular endothelial cells to identify genes with functions common to lymphatic and blood vascular endothelium. On the basis of these analyses, we showed that LGALS1, which encodes the glycan-binding protein Galectin-1, promoted lymphatic vascular growth in vitro and in vivo and contributed to maintenance of the lymphatic endothelial phenotype. Our results provide insight into the signaling networks that control lymphangiogenesis and lymphatic remodeling and potentially identify therapeutic targets and biomarkers in disease specific to lymphatic or blood vessels.


Assuntos
Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Transdução de Sinais/fisiologia , Células Endoteliais/citologia , Galectina 1/genética , Galectina 1/metabolismo , Estudo de Associação Genômica Ampla , Humanos
10.
Growth Factors ; 35(2-3): 61-75, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28697634

RESUMO

Remodelling of lymphatic vessels in tumours facilitates metastasis to lymph nodes. The growth factors VEGF-C and VEGF-D are well known inducers of lymphatic remodelling and metastasis in cancer. They are initially produced as full-length proteins requiring proteolytic processing in order to bind VEGF receptors with high affinity and thereby promote lymphatic remodelling. The fibrinolytic protease plasmin promotes processing of VEGF-C and VEGF-D in vitro, but its role in processing them in cancer was unknown. Here we explore plasmin's role in proteolytically activating VEGF-D in vivo, and promoting lymphatic remodelling and metastasis in cancer, by co-expressing the plasmin inhibitor α2-antiplasmin with VEGF-D in a mouse tumour model. We show that α2-antiplasmin restricts activation of VEGF-D, enlargement of intra-tumoural lymphatics and occurrence of lymph node metastasis. Our findings indicate that the fibrinolytic system influences lymphatic remodelling in tumours which is consistent with previous clinicopathological observations correlating fibrinolytic components with cancer metastasis.


Assuntos
Antifibrinolíticos/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , alfa 2-Antiplasmina/uso terapêutico , Animais , Antifibrinolíticos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/patologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , alfa 2-Antiplasmina/farmacologia
11.
Sci Data ; 4: 170009, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248931

RESUMO

Many cell types undergo migration during embryogenesis and disease. Endothelial cells line blood vessels and lymphatics, which migrate during development as part of angiogenesis, lymphangiogenesis and other types of vessel remodelling. These processes are also important in wound healing, cancer metastasis and cardiovascular conditions. However, the molecular control of endothelial cell migration is poorly understood. Here, we present a dataset containing siRNA screens that identify known and novel components of signalling pathways regulating migration of lymphatic endothelial cells. These components are compared to signalling in blood vascular endothelial cells. Further, using high-content microscopy, we captured a dataset of images of migrating cells following transfection with a genome-wide siRNA library. These datasets are suitable for the identification and analysis of genes involved in endothelial cell migration and morphology, and for computational approaches to identify signalling networks controlling the migratory response and integration of cell morphology, gene function and cell signaling. This may facilitate identification of protein targets for therapeutically modulating angiogenesis and lymphangiogenesis in the context of human disease.


Assuntos
Movimento Celular , Células Endoteliais , Proliferação de Células , Humanos , Interferência de RNA , RNA Interferente Pequeno
12.
Assay Drug Dev Technol ; 15(1): 30-43, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28092460

RESUMO

The lymphatic system is a series of vessels that transport cells and excess fluid from tissues to the blood vascular system. Normally quiescent, the lymphatics can grow or remodel in response to developmental, immunological, or cells pathological stimuli. Lymphatic vessels comprise lymphatic endothelial cells (LECs) that can respond to external growth factors by undergoing proliferation, migration, adhesion, and tube and lumen formation into new vessel structures, a process known as lymphangiogenesis. To understand the key gene and signaling pathways necessary for lymphangiogenesis and lymphatic vessel remodeling, we have developed a three-dimensional LEC tube formation assay to explore the role of kinase signaling in these processes. The collagen-overlay-based assay was used with primary human adult dermal LECs to investigate a library of 60 tyrosine kinase (TK) and TK-like genes by siRNA knockdown. Nine candidate genes were identified and characterized for their ability to modify key parameters of lymphatic tube formation, including tube length, area, thickness, branching, and number of blind-ended sacs. Four genes-ZAP70, IRAK4, RIPK1, and RIPK2-were identified as high-confidence hits after tertiary deconvolution screens and demonstrate the utility of the assay to define LEC genes critical for the formation of tube structures. This assay facilitates the identification of potential molecular targets for novel drugs designed to modulate the remodeling of lymphatics that is important for the metastatic spread of cancer and other pathologies.


Assuntos
Células Endoteliais/fisiologia , Linfangiogênese/fisiologia , Vasos Linfáticos/citologia , Vasos Linfáticos/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Técnicas de Cultura de Células , Células Endoteliais/química , Células Endoteliais da Veia Umbilical Humana/química , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Vasos Linfáticos/química , RNA Interferente Pequeno/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/análise
13.
Development ; 144(3): 507-518, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087639

RESUMO

Vascular endothelial growth factors (VEGFs) control angiogenesis and lymphangiogenesis during development and in pathological conditions. In the zebrafish trunk, Vegfa controls the formation of intersegmental arteries by primary angiogenesis and Vegfc is essential for secondary angiogenesis, giving rise to veins and lymphatics. Vegfd has been largely thought of as dispensable for vascular development in vertebrates. Here, we generated a zebrafish vegfd mutant by genome editing. vegfd mutants display significant defects in facial lymphangiogenesis independent of vegfc function. Strikingly, we find that vegfc and vegfd cooperatively control lymphangiogenesis throughout the embryo, including during the formation of the trunk lymphatic vasculature. Interestingly, we find that vegfd and vegfc also redundantly drive artery hyperbranching phenotypes observed upon depletion of Flt1 or Dll4. Epistasis and biochemical binding assays suggest that, during primary angiogenesis, Vegfd influences these phenotypes through Kdr (Vegfr2) rather than Flt4 (Vegfr3). These data demonstrate that, rather than being dispensable during development, Vegfd plays context-specific indispensable and also compensatory roles during both blood vessel angiogenesis and lymphangiogenesis.


Assuntos
Linfangiogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Fator D de Crescimento do Endotélio Vascular/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Linfangiogênese/genética , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Modelos Biológicos , Mutagênese , Neovascularização Fisiológica/genética , Deleção de Sequência , Transdução de Sinais , Regulação para Cima , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/fisiologia , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
J Biol Chem ; 291(53): 27265-27278, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27852824

RESUMO

VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93-Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C.


Assuntos
Endotélio Vascular/patologia , Linfangiogênese , Vasos Linfáticos/patologia , Neovascularização Patológica/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Neutralizantes , Células Cultivadas , Derme/metabolismo , Derme/patologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Vasos Linfáticos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Mutagênese Sítio-Dirigida , Mutação/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/química , Fator C de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/química , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
15.
J Vis Exp ; (109)2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27022756

RESUMO

The analysis of receptor tyrosine kinases and their interacting ligands involved in vascular biology is often challenging due to the constitutive expression of families of related receptors, a broad range of related ligands and the difficulty of dealing with primary cultures of specialized endothelial cells. Here we describe a bioassay for the detection of ligands to the vascular endothelial growth factor receptor-2 (VEGFR-2), a key transducer of signals that promote angiogenesis and lymphangiogenesis. A cDNA encoding a fusion of the extracellular (ligand-binding) region of VEGFR-2 with the transmembrane and cytoplasmic regions of the erythropoietin receptor (EpoR) is expressed in the factor-dependent cell line Ba/F3. This cell line grows in the presence of interleukin-3 (IL-3) and withdrawal of this factor results in death of the cells within 24 hr. Expression of the VEGFR-2/EpoR receptor fusion provides an alternative mechanism to promote survival and potentially proliferation of stably transfected Ba/F3 cells in the presence of a ligand capable of binding and cross-linking the extracellular portion of the fusion protein (i.e., one that can cross-link the VEGFR-2 extracellular region). The assay can be performed in two ways: a semi-quantitative approach in which small volumes of ligand and cells permit a rapid result in 24 hr, and a quantitative approach involving surrogate markers of a viable cell number. The assay is relatively easy to perform, is highly responsive to known VEGFR-2 ligands and can accommodate extracellular inhibitors of VEGFR-2 signaling such as monoclonal antibodies to the receptor or ligands, and soluble ligand traps.


Assuntos
Bioensaio/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Humanos , Ligantes , Ligação Proteica , Receptores da Eritropoetina/genética , Proteínas Recombinantes , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
16.
J Pathol ; 239(2): 152-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26924464

RESUMO

Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF-D is a protein that promotes blood vessel leak and oedema when overexpressed in tissues, but the role of endogenous VEGF-D in pathological oedema was unknown. To address these issues, we exposed Vegfd-deficient mice to hyperoxia. The resulting pulmonary oedema in Vegfd-deficient mice was substantially reduced compared to wild-type, as was the protein content of bronchoalveolar lavage fluid, consistent with reduced vascular leak. Vegf-d and its receptor Vegfr-3 were more highly expressed in lungs of hyperoxic, versus normoxic, wild-type mice, indicating that components of the Vegf-d signalling pathway are up-regulated in hyperoxia. Importantly, VEGF-D and its receptors were co-localized on blood vessels in clinical samples of human lungs exposed to hyperoxia; hence, VEGF-D may act directly on blood vessels to promote fluid leak. Our studies show that Vegf-d promotes oedema in response to hyperoxia in mice and support the hypothesis that VEGF-D signalling promotes vascular leak in human HALI. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Lesão Pulmonar Aguda/complicações , Hiperóxia/complicações , Edema Pulmonar/etiologia , Transdução de Sinais , Fator D de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular Tumoral , Feminino , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Oxigênio/metabolismo , Edema Pulmonar/complicações , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Fator D de Crescimento do Endotélio Vascular/administração & dosagem , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Front Immunol ; 7: 621, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066431

RESUMO

Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host's immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion.

18.
Biochem Soc Trans ; 42(6): 1569-75, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399572

RESUMO

A chronic hyperactivated angiogenic state in cancer plays an important role in tumour growth and metastasis and has been identified as one of the hallmarks of cancer. Inhibition of this process has been associated with tumour suppression in many pre-clinical contexts using different animal tumour models. Anti-angiogenic therapeutics were subsequently developed and used to treat several prevalent types of human cancer. However, recent clinical experience has revealed limitations of this approach in treating cancer as patient response varies over a wide range. Given that there are complex underlying molecular and cellular changes provoked by anti-angiogenic treatment within the tumour microenvironment (TME), it is not surprising that modest effectiveness and resistance have been observed in the clinical setting. This article discusses these issues in the context of VEGF-A-targeted anti-angiogenic treatment of cancer and provides insight into the importance of tumour endothelium for understanding the tumour response to anti-angiogenic therapy. Special consideration is also given to possible approaches for investigating how endothelium contributes to the tumour response to anti-angiogenic agents and for exploring the therapeutic and biomarker potential of targeting tumour endothelium.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Endotélio Vascular/fisiologia , Inibidores da Angiogênese/farmacologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Microambiente Tumoral
19.
Nat Rev Cancer ; 14(3): 159-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24561443

RESUMO

The generation of new lymphatic vessels through lymphangiogenesis and the remodelling of existing lymphatics are thought to be important steps in cancer metastasis. The past decade has been exciting in terms of research into the molecular and cellular biology of lymphatic vessels in cancer, and it has been shown that the molecular control of tumour lymphangiogenesis has similarities to that of tumour angiogenesis. Nevertheless, there are significant mechanistic differences between these biological processes. We are now developing a greater understanding of the specific roles of distinct lymphatic vessel subtypes in cancer, and this provides opportunities to improve diagnostic and therapeutic approaches that aim to restrict the progression of cancer.


Assuntos
Linfangiogênese , Vasos Linfáticos/fisiopatologia , Neoplasias/fisiopatologia , Animais , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica
20.
Development ; 141(6): 1239-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24523457

RESUMO

The VEGFC/VEGFR3 signaling pathway is essential for lymphangiogenesis (the formation of lymphatic vessels from pre-existing vasculature) during embryonic development, tissue regeneration and tumor progression. The recently identified secreted protein CCBE1 is indispensible for lymphangiogenesis during development. The role of CCBE1 orthologs is highly conserved in zebrafish, mice and humans with mutations in CCBE1 causing generalized lymphatic dysplasia and lymphedema (Hennekam syndrome). To date, the mechanism by which CCBE1 acts remains unknown. Here, we find that ccbe1 genetically interacts with both vegfc and vegfr3 in zebrafish. In the embryo, phenotypes driven by increased Vegfc are suppressed in the absence of Ccbe1, and Vegfc-driven sprouting is enhanced by local Ccbe1 overexpression. Moreover, Vegfc- and Vegfr3-dependent Erk signaling is impaired in the absence of Ccbe1. Finally, CCBE1 is capable of upregulating the levels of fully processed, mature VEGFC in vitro and the overexpression of mature VEGFC rescues ccbe1 loss-of-function phenotypes in zebrafish. Taken together, these data identify Ccbe1 as a crucial component of the Vegfc/Vegfr3 pathway in the embryo.


Assuntos
Linfangiogênese/fisiologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Linfangiogênese/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Dados de Sequência Molecular , Mutação Puntual , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA