Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663265

RESUMO

Sporidiobolus pararoseus Y16, a species of significant ecological importance, has distinctive physiological and biological regulatory systems that aid in its survival and environmental adaptation. The goal of this investigation was to understand the complex interactions between physiological and molecular mechanisms in pear fruits as induced by S. pararoseus Y16. The study investigated the use of S. pararoseus Y16 and ascorbic acid (VC) in combination in controlling blue mold decay in pears via physiological and transcriptomic approach. The study results showed that treatment of S. pararoseus Y16 with 150 µg/mL VC reduced pears blue mold disease incidence from 43% to 11%. Furthermore, the combination of S. pararoseus Y16 and VC significantly inhibited mycelia growth and spore germination of Penicillium expansum in the pear's wounds. The pre-treatment did not impair post-harvest qualities of pear fruit but increased antioxidant enzyme activity specifically polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT) activities as well as phenylalanine ammonia-lyase (PAL) enzyme activity. The transcriptome analysis further uncovered 395 differentially expressed genes (DEGs) and pathways involved in defense mechanisms and disease resistance. Notable pathways of the DEGs include plant-pathogen interaction, tyrosine metabolism, and hormone signal transduction pathways. The integrative approach with both physiological and transcriptomic tools to investigate postharvest pathology in pear fruits with clarification on how S. pararoseus Y16 enhanced with VC, improved gene expression for disease defense, and create alternative controls strategies for managing postharvest diseases.


Assuntos
Ácido Ascórbico , Estresse Oxidativo , Penicillium , Doenças das Plantas , Pyrus , Pyrus/microbiologia , Penicillium/fisiologia , Penicillium/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Doenças das Plantas/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Perfilação da Expressão Gênica , Basidiomycota/fisiologia , Transcriptoma
2.
Biometals ; 36(5): 943-960, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36749495

RESUMO

Potentially toxic constituents in traditional medicines remain a concern due to health risks posed to consumers. Thirty-six traditional medicines (TM) consisting of 14 Indian Ayurvedic Medicines, 11 Chinese Traditional Medicines and eleven Ghanaian Traditional Medicines were evaluated using Total Reflection X-ray Fluorescence Spectrometer (T-XRF) after microwave assisted acid digestion. Physiologically Based Extraction Test (PBET) was used to obtain bioaccessible elemental concentrations. Merck XVI multi-element standard were used to evaluate the accuracy of the analytical method. The concentrations of the elements were quantified in (mg kg-1): Cr (0.01-698), Mn (0.01-1140), Fe (15-73300), Ni (1-1340), Cu (3-8160), Zn (0.01-224). The greatest bioaccessible concentrations of arsenic was 0.80 mg kg-1 and 0.44 mg kg-1 in the gastric and intestinal phases respectively. In order to evaluate the human health risks from ingesting these TM, the Acceptable Daily Intake (ADI) was calculated for each medicine based on element-specific bioaccessibility-adjusted concentrations and results compared with the United States Environmental Protection Agency (USEPA) Reference Dose (RfD) limits. The Acceptable Daily Intake (ADI) values for risks were within the USEPA RfD. Hazard quotients (HQ) of TM were < 1, meaning elemental concentrations do not pose non-carcinogenic risks to adult consumers. In summary the methods applied in the study gives a new insight on human health risks of potentially toxic and essential micronutrients elements in TM.


Assuntos
Arsênio , Metais Pesados , Oligoelementos , Estados Unidos , Adulto , Humanos , Micronutrientes , Gana , Arsênio/toxicidade , Oligoelementos/análise , Medição de Risco/métodos
3.
Plants (Basel) ; 10(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34451681

RESUMO

Mulberry is an economically significant crop for the sericulture industry worldwide. Stresses such as drought exposure have a significant influence on plant survival. Because metabolome directly reflects plant physiological condition, performing a global metabolomic analysis is one technique to examine this influence. Using a liquid chromatography-mass spectrometry (LC-MS) technique based on an untargeted metabolomic approach, the effect of drought stress on mulberry Yu-711 metabolic balance was examined. For this objective, Yu-711 leaves were subjected to two weeks of drought stress treatment and control without drought stress. Numerous differentially accumulated metabolic components in response to drought stress treatment were revealed by multivariate and univariate statistical analysis. Drought stress treatment (EG) revealed a more differentiated metabolite response than the control (CK). We found that the levels of total lipids, galactolipids, and phospholipids (PC, PA, PE) were significantly altered, producing 48% of the total differentially expressed metabolites. Fatty acyls components were the most abundant lipids expressed and decreased considerably by 73.6%. On the other hand, the prenol lipids class of lipids increased in drought leaves. Other classes of metabolites, including polyphenols (flavonoids and cinnamic acid), organic acid (amino acids), carbohydrates, benzenoids, and organoheterocyclic, had a dynamic trend in response to the drought stress. However, their levels under drought stress decreased significantly compared to the control. These findings give an overview for the understanding of global plant metabolic changes in defense mechanisms by revealing the mulberry plant metabolic profile through differentially accumulated compounds.

4.
Chemosphere ; 235: 908-917, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31299704

RESUMO

This study assesses the distribution, contamination and human health risks of major, minor and trace elements in the topsoil and subsoil of two informal e-waste recycling sites in Accra, Ghana. Metal concentrations in Agbogbloshie exceeded the Dutch Soil intervention values with exceedances of 72%, 57%, 57%, 38%, 16%, 2% for Cu, Zn, Pb, Ba, Cd and As respectively. Metal concentrations in Ashaiman exceeded the Dutch Soil intervention values with exceedances of 62%, 57% and 46% for Cu, Zn and Pb respectively. Geoaccumulation indices indicated that the topsoils of the burn area and dismantling areas of Agbogbloshie e-waste recycling site were strongly contaminated by Pb and uncontaminated by Cr, Fe, As and Ba. Lead (Pb) contributed greatly to non-carcinogenic ingestion hazard quotient for residents living near Agbogbloshie and Ashaiman e-waste recycling sites while arsenic (As) presented carcinogenic risks to children from the dismantling area topsoils. Non-carcinogenic risks from ingestion were significant with children being more susceptible to non-carcinogenic ingestion risks than adults. Non-carcinogenic risks from dermal exposure were negligible. Hazard quotients of Pb for children in burn area topsoils and dismantling area topsoils were 7.4-7.6-fold greater than that for adults. The mean geoaccumulation indices values of Pb and Cu indicated extreme contamination of topsoils with these elements. A "novel environmental assessment tool" based on the Agency for Toxic Substances and Disease Registry (ASTDR) total impact points confirmed Pb and Cu as the most toxic elements.


Assuntos
Arsênio/análise , Carcinógenos Ambientais/análise , Resíduo Eletrônico/análise , Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Criança , Gana , Humanos , Reciclagem , Medição de Risco , Solo/química , Oligoelementos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA