Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biochemistry ; 63(10): 1297-1306, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729622

RESUMO

The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-µM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.


Assuntos
Proteínas de Ligação a DNA , Polarização de Fluorescência , Peptídeos , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Polarização de Fluorescência/métodos , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
2.
J Med Chem ; 66(23): 16051-16061, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37996079

RESUMO

WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1, with a KD of 6 ± 2 µM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19. The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1, 18, and 19, accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.


Assuntos
DNA , Bibliotecas de Moléculas Pequenas , DNA/química , Biblioteca Gênica , Ligantes , Aprendizado de Máquina , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química
3.
ACS Chem Biol ; 18(8): 1846-1853, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37556795

RESUMO

Increased expression and hyperactivation of the methyltransferase SET domain bifurcated 1 (SETDB1) are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting that this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's triple tudor domain, (R,R)-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, (R,R)-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with (R,R)-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. (R,R)-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide and that this activity is stimulated by (R,R)-59 primarily through an increase in catalytic activity rather than a change in S-adenosyl methionine binding.


Assuntos
Histona-Lisina N-Metiltransferase , Domínios PR-SET , Histona-Lisina N-Metiltransferase/metabolismo , Ligantes , Metilação , Domínio Tudor
4.
J Med Chem ; 66(15): 10273-10288, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499118

RESUMO

Histone deacetylase 6 (HDAC6) inhibition is an attractive strategy for treating numerous cancers, and HDAC6 catalytic inhibitors are currently in clinical trials. The HDAC6 zinc-finger ubiquitin-binding domain (UBD) binds free C-terminal diglycine motifs of unanchored ubiquitin polymer chains and protein aggregates, playing an important role in autophagy and aggresome assembly. However, targeting this domain with small molecule antagonists remains an underdeveloped avenue of HDAC6-focused drug discovery. We report SGC-UBD253 (25), a chemical probe potently targeting HDAC6-UBD in vitro with selectivity over nine other UBDs, except for weak USP16 binding. In cells, 25 is an effective antagonist of HDAC6-UBD at 1 µM, with marked proteome-wide selectivity. We identified SGC-UBD253N (32), a methylated derivative of 25 that is 300-fold less active, serving as a negative control. Together, 25 and 32 could enable further exploration of the biological function of the HDAC6-UBD and investigation of the therapeutic potential of targeting this domain.


Assuntos
Ubiquitina , Ubiquitinas , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Ligação Proteica , Ubiquitina/metabolismo , Dedos de Zinco
5.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37214894

RESUMO

Increased expression and hyperactivation of the methyltransferase SETDB1 are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's Triple Tudor Domain, ( R,R )-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, ( R,R )-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with ( R,R )-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. ( R,R )-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide, and that this activity is stimulated by ( R,R )-59 primarily through an increase in catalytic activity rather than a change in SAM binding.

6.
J Med Chem ; 66(7): 5041-5060, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36948210

RESUMO

DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4DCAF1 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning. This led to the discovery of a compound (Z1391232269) with an SPR KD of 11 µM. Structure-guided hit optimization led to the discovery of OICR-8268 (26e) with an SPR KD of 38 nM and cellular target engagement with EC50 of 10 µM as measured by cellular thermal shift assay (CETSA). OICR-8268 is an excellent tool compound to enable the development of next-generation DCAF1 ligands toward cancer therapeutics, further investigation of DCAF1 functions in cells, and the development of DCAF1-based PROTACs.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ligantes , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/química
7.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782742

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Assuntos
Nucléolo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sondas Moleculares/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Metilação , Mieloma Múltiplo/metabolismo , Nucleossomos/metabolismo
8.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081630

RESUMO

BACKGROUNDThe role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome.METHODSUsing SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients' plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution.RESULTSWe identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811-825, S-881-895, and N-156-170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes.CONCLUSIONEpitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats.FUNDINGOntario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund.


Assuntos
Testes de Aglutinação/métodos , Formação de Anticorpos/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Epitopos de Linfócito B/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , COVID-19/sangue , COVID-19/mortalidade , Epitopos/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Humanos , Imunidade Humoral , Análise em Microsséries/métodos , Nucleocapsídeo/química , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Peptídeos/imunologia , SARS-CoV-2/genética , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Nat Commun ; 10(1): 1915, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015424

RESUMO

Bromodomains (BRDs) are conserved protein interaction modules which recognize (read) acetyl-lysine modifications, however their role(s) in regulating cellular states and their potential as targets for the development of targeted treatment strategies is poorly understood. Here we present a set of 25 chemical probes, selective small molecule inhibitors, covering 29 human bromodomain targets. We comprehensively evaluate the selectivity of this probe-set using BROMOscan and demonstrate the utility of the set identifying roles of BRDs in cellular processes and potential translational applications. For instance, we discovered crosstalk between histone acetylation and the glycolytic pathway resulting in a vulnerability of breast cancer cell lines under conditions of glucose deprivation or GLUT1 inhibition to inhibition of BRPF2/3 BRDs. This chemical probe-set will serve as a resource for future applications in the discovery of new physiological roles of bromodomain proteins in normal and disease states, and as a toolset for bromodomain target validation.


Assuntos
Antineoplásicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Acetilação , Sequência de Aminoácidos , Antineoplásicos/química , Linhagem Celular Tumoral , Epigênese Genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucose/deficiência , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Ensaios de Triagem em Larga Escala , Histona Acetiltransferases , Chaperonas de Histonas , Histonas/genética , Histonas/metabolismo , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
10.
Nat Commun ; 10(1): 19, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604761

RESUMO

Protein methyltransferases (PMTs) comprise a major class of epigenetic regulatory enzymes with therapeutic relevance. Here we present a collection of chemical probes and associated reagents and data to elucidate the function of human and murine PMTs in cellular studies. Our collection provides inhibitors and antagonists that together modulate most of the key regulatory methylation marks on histones H3 and H4, providing an important resource for modulating cellular epigenomes. We describe a comprehensive and comparative characterization of the probe collection with respect to their potency, selectivity, and mode of inhibition. We demonstrate the utility of this collection in CD4+ T cell differentiation assays revealing the potential of individual probes to alter multiple T cell subpopulations which may have implications for T cell-mediated processes such as inflammation and immuno-oncology. In particular, we demonstrate a role for DOT1L in limiting Th1 cell differentiation and maintaining lineage integrity. This chemical probe collection and associated data form a resource for the study of methylation-mediated signaling in epigenetics, inflammation and beyond.


Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Proteínas Metiltransferases/antagonistas & inibidores , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Ensaios Enzimáticos/métodos , Epigenômica/métodos , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Células Jurkat , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/genética , Células Th1/efeitos dos fármacos , Células Th1/fisiologia
11.
Epigenetics ; 12(5): 378-400, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28080202

RESUMO

Epigenetic chemical probes are potent, cell-active, small molecule inhibitors or antagonists of specific domains in a protein; they have been indispensable for studying bromodomains and protein methyltransferases. The Structural Genomics Consortium (SGC), comprising scientists from academic and pharmaceutical laboratories, has generated most of the current epigenetic chemical probes. Moreover, the SGC has shared about 4 thousand aliquots of these probes, which have been used primarily for phenotypic profiling or to validate targets in cell lines or primary patient samples cultured in vitro. Epigenetic chemical probes have been critical tools in oncology research and have uncovered mechanistic insights into well-established targets, as well as identify new therapeutic starting points. Indeed, the literature primarily links epigenetic proteins to oncology, but applications in inflammation, viral, metabolic and neurodegenerative diseases are now being reported. We summarize the literature of these emerging applications and provide examples where existing probes might be used.


Assuntos
Epigenômica , Histonas/genética , Proteínas Metiltransferases/genética , Bibliotecas de Moléculas Pequenas/química , Acetilação , Histonas/química , Humanos , Lisina/metabolismo , Proteínas Metiltransferases/química , Bibliotecas de Moléculas Pequenas/uso terapêutico
12.
Clin Lymphoma Myeloma Leuk ; 12(5): 330-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22683301

RESUMO

UNLABELLED: Clioquinol is a small-molecule metal ionophore that inhibits the proteasome through a metal-dependent mechanism. Here, we report a phase I study of clioquinol in patients with refractory hematologic malignancies. Neuropathy and abdominal pain were dose-limiting toxicities. Minimal pharmacodynamic effects were observed, and there were no clinical responses. BACKGROUND: Clioquinol is a small-molecule metal ionophore that inhibits the enzymatic activity of the proteasome and displays preclinical efficacy in hematologic malignancies in vitro and in vivo. Therefore, we conducted a phase I clinical trial of clioquinol in patients with refractory hematologic malignancies to assess its safety and determine its biological activity in this patient population. METHODS: Patients with refractory hematologic malignancies were treated with increasing doses of oral clioquinol twice daily for 15 doses. Plasma and intracellular levels of clioquinol were measured. Enzymatic activity of the proteasome was measured before and after drug administration. RESULTS: Sixteen cycles of clioquinol were administered to 11 patients with 5 patients reenrolled at the next dose level as per the permitted intrapatient dose escalation. Dose-limiting neurotoxicity and abdominal pain were observed at a dose of 1600 mg twice daily. Intracellular drug levels were low. Minimal inhibition of the proteasome was observed. No clinical responses were observed. CONCLUSION: In patients with refractory hematologic malignancies, the maximal tolerated dose of clioquinol was determined. Minimal inhibition of the proteasome was observed at tolerable doses, likely due to low intracellular levels of the drug.


Assuntos
Clioquinol/administração & dosagem , Neoplasias Hematológicas/tratamento farmacológico , Ionóforos/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Clioquinol/efeitos adversos , Clioquinol/sangue , Clioquinol/farmacocinética , Esquema de Medicação , Feminino , Seguimentos , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/metabolismo , Humanos , Ionóforos/efeitos adversos , Ionóforos/farmacocinética , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/metabolismo
13.
Invest Ophthalmol Vis Sci ; 53(7): 3806-16, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22589438

RESUMO

PURPOSE: To determine protein regulation following activation of human, optic nerve head (ONH), lamina cribrosa (LC) cells in response to mechanical strain. METHODS: LC cells were isolated and grown from donor tissue in specific media at 37°C and 5% CO(2) humidified incubator. Cells were grown to confluence on collagen I-coated flexible-bottom culture plates, rinsed with Dulbecco's phosphate-buffered saline, and left for 24 hours in serum-free media. They were subjected to 3% or 12% cyclic equiaxial stretch for 2 or 24 hours using a commercial strain-unit system. Control cells were serum-deprived and incubated without stretch for 24 hours. Nano liquid chromatography-mass spectrometry analysis with isobaric tags for relative and absolute quantitation labeling was used to determine protein regulation. RESULTS: In all, 526 proteins were discovered at a 95% confidence limit. Analysis of associated pathways and functional annotation indicated that the LC cells reacted in vitro to mechanical strain by activating pathways involved in protein synthesis, cellular movement, cell-to-cell signaling, and inflammation. These pathways indicated consistent major protein hubs across all stretch/time conditions involving transforming growth factor-ß1 (TGFß1), tumor necrosis factor (TNF), caspase-3 (CASP3), and tumor protein-p53 (p53). Among proteins of particular interest, also found in multiple stretch/time conditions, were bcl-2-associated athanogene 5 (BAG5), nucleolar protein 66 (NO66), and eukaryotic translation initiation factor 5A (eIF-5A). CONCLUSIONS: Pathway analysis identified major protein hubs (TGFß1, TNF, CASP3, p53) and pathways all previously implicated in cellular activation and in the pathogenesis of glaucomatous optic neuropathy. Several specific proteins of interest (BAG5, NO66, eIF-5A) were identified for future investigation as to their role in ONH glial activation.


Assuntos
Neuroglia/metabolismo , Disco Óptico/metabolismo , Proteômica , Estresse Mecânico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caspase 3/metabolismo , Cromatografia Líquida/métodos , Proteínas Cromossômicas não Histona/metabolismo , Dioxigenases , Histona Desmetilases , Humanos , Espectrometria de Massas/métodos , Neuroglia/citologia , Disco Óptico/citologia , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
14.
PLoS One ; 7(2): e30992, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363530

RESUMO

BACKGROUND: Breast cancer is the most common malignancy among women worldwide in terms of incidence and mortality. About 10% of North American women will be diagnosed with breast cancer during their lifetime and 20% of those will die of the disease. Breast cancer is a heterogeneous disease and biomarkers able to correctly classify patients into prognostic groups are needed to better tailor treatment options and improve outcomes. One powerful method used for biomarker discovery is sample screening with mass spectrometry, as it allows direct comparison of protein expression between normal and pathological states. The purpose of this study was to use a systematic and objective method to identify biomarkers with possible prognostic value in breast cancer patients, particularly in identifying cases most likely to have lymph node metastasis and to validate their prognostic ability using breast cancer tissue microarrays. METHODS AND FINDINGS: Differential proteomic analyses were employed to identify candidate biomarkers in primary breast cancer patients. These analyses identified decorin (DCN) and endoplasmin (HSP90B1) which play important roles regulating the tumour microenvironment and in pathways related to tumorigenesis. This study indicates that high expression of Decorin is associated with lymph node metastasis (p<0.001), higher number of positive lymph nodes (p<0.0001) and worse overall survival (p = 0.01). High expression of HSP90B1 is associated with distant metastasis (p<0.0001) and decreased overall survival (p<0.0001) these patients also appear to benefit significantly from hormonal treatment. CONCLUSIONS: Using quantitative proteomic profiling of primary breast cancers, two new promising prognostic and predictive markers were found to identify patients with worse survival. In addition HSP90B1 appears to identify a group of patients with distant metastasis with otherwise good prognostic features.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Decorina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Anticorpos Antineoplásicos/imunologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/imunologia , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Metástase Linfática/patologia , Espectrometria de Massas , Dados de Sequência Molecular , Análise Multivariada , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Reprodutibilidade dos Testes
15.
Mol Cell Proteomics ; 11(2): M111.012302, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22126795

RESUMO

We investigate the role of glial cell activation in the human optic nerve caused by raised intraocular pressure, and their potential role in the development of glaucomatous optic neuropathy. To do this we present a proteomics study of the response of cultured, optic nerve head astrocytes to biomechanical strain, the magnitude and mode of strain based on previously published quantitative models. In this case, astrocytes were subjected to 3 and 12% stretches for either 2 h or 24 h. Proteomic methods included nano-liquid chromatography, tandem mass spectrometry, and iTRAQ labeling. Using controls for both stretch and time, a six-plex iTRAQ liquid chromatography- tandem MS (LC/MS/MS) experiment yielded 573 proteins discovered at a 95% confidence limit. The pathways included transforming growth factor ß1, tumor necrosis factor, caspase 3, and tumor protein p53, which have all been implicated in the activation of astrocytes and are believed to play a role in the development of glaucomatous optic neuropathy. Confirmation of the iTRAQ analysis was performed by Western blotting of various proteins of interest including ANXA 4, GOLGA2, and αB-Crystallin.


Assuntos
Astrócitos/metabolismo , Neuroglia/metabolismo , Disco Óptico/metabolismo , Doenças do Nervo Óptico/metabolismo , Proteoma/análise , Proteômica , Estresse Mecânico , Astrócitos/citologia , Western Blotting , Células Cultivadas , Cromatografia Líquida , Humanos , Técnicas Imunoenzimáticas , Neuroglia/citologia , Disco Óptico/citologia , Doenças do Nervo Óptico/etiologia , Doenças do Nervo Óptico/patologia , Espectrometria de Massas em Tandem
16.
J Hematol Oncol ; 3: 13, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20374647

RESUMO

Multiple myeloma (MM) is the second most common hematological malignancy in adults. It is characterized by clonal proliferation of terminally differentiated B lymphocytes and over-production of monoclonal immunoglobulins. Recurrent genomic aberrations have been identified to contribute to the aggressiveness of this cancer. Despite a wealth of knowledge describing the molecular biology of MM as well as significant advances in therapeutics, this disease remains fatal. The identification of biomarkers, especially through the use of mass spectrometry, however, holds great promise to increasing our understanding of this disease. In particular, novel biomarkers will help in the diagnosis, prognosis and therapeutic stratification of MM. To date, results from mass spectrometry studies of MM have provided valuable information with regards to MM diagnosis and response to therapy. In addition, mass spectrometry was employed to study relevant signaling pathways activated in MM. This review will focus on how mass spectrometry has been applied to increase our understanding of MM.


Assuntos
Biomarcadores Tumorais/metabolismo , Espectrometria de Massas , Mieloma Múltiplo/metabolismo , Proteômica , Humanos , Mieloma Múltiplo/patologia , Transdução de Sinais
17.
Anal Bioanal Chem ; 396(3): 1223-47, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20033139

RESUMO

The endogenous peptides of human serum may have regulatory functions, have been associated with physiological states, and their modifications may reveal some mechanisms of disease. In order to correlate levels of specific peptides with disease alongside internal standards, the polypeptides must first be reliably extracted and identified. Endogenous blood peptides can be effectively enriched by precipitation of the serum with organic solvents followed by selective extraction of peptides using aqueous solutions modified with organic solvents. Polypeptides on filter paper were assayed with Coomasie brilliant blue binding. The polypeptides were resolved by detergent tricine polyacrylamide electrophoresis and visualized by diamine silver staining. Peptides in the extracts were collected by C18 and analyzed by matrix-assisted laser desorption/ionization and liquid chromatography-electrospray ionization-tandem mass spectrometry (MS/MS) quadrupole time-of-flight MS/MS. Peptides were resolved as multiple isotopic peaks in MS mode with mass deviation of 0.1 Da or less and similar accuracy for fragments. The sensitivity of MS and MS/MS analysis was estimated to be in the picomolar range or less. The peptide composition of the extracts was dependent on solvent formulation. Multiple peptides from apolipoproteins, complement proteins, coagulation factors, and many others were identified by X!Tandem with high mass accuracy of peptide ions and fragments from collision-induced dissociation. Many previously unreported posttranslational modifications of peptides including phosphorylations, oxidations, glycosylations, and others were detected with high mass accuracy and may be of clinical importance. About 4,630 redundant peptides were identified with 99% confidence separately, and together some 1,251 distinct proteins were identified with 99% confidence or greater using the Paragon algorithm.


Assuntos
Peptídeos/sangue , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Precipitação Química , Eletroforese em Gel de Poliacrilamida , Humanos , Dados de Sequência Molecular , Peptídeos/análise , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
18.
Anal Biochem ; 370(2): 228-45, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17884004

RESUMO

Blood peptides can be concentrated, extracted, and analyzed with strong signal-to-noise ratios by precipitation in organic solvents followed by extraction in water. Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) hybrid quadrupole time-of-flight (Qq-TOF) were used to analyze the precipitated and extracted endogenous peptides from fetal calf serum. C18 solid-phase extraction with or without prior precipitation in ammonium sulfate, size exclusion chromatography, dealbuminization, dye affinity chromatography, ultrafiltration, and differential precipitation in organic solvents were compared. Hundreds of different ions could be observed by MALDI in the various fractions. It appeared that some peptides were freely dissolved and that not all peptides in blood were obliged to remain bound to albumin or other high-molecular-mass proteins. Mass spectra with high signal-to-noise ratios were obtained from polypeptides precipitated with organic solvents followed by extraction of the peptides from the pellet with water. The peptides extracted from organic precipitates were analyzed by nano liquid chromatography (LC)-ESI-Qq-TOF. In addition to many commonly abundant serum proteins, apparent low-abundance peptides associated with cancer biology from proteins such as insulin-like growth factor II, thymosin beta4 and beta9, plasminogen, coagulation factors, and extracellular matrix protein 1 were observed.


Assuntos
Peptídeos/sangue , Sequência de Aminoácidos , Proteínas Sanguíneas/química , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Peptídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
20.
Rapid Commun Mass Spectrom ; 19(2): 213-20, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15593255

RESUMO

The use of a high-performance orthogonal time-of-flight (o-TOF) mass spectrometer for sequence analysis is described. The mass spectrometer is equipped with a matrix-assisted laser desorption/ionization (MALDI) source that operates at elevated pressure, 0.01-1 Torr. Ion fragmentation is controlled by varying the pressure of the buffer gas, the laser energy, the voltage difference between the MALDI target and the adjacent sampling cone, and between the cone and the quadrupole ion guide. The peptides were analyzed under optimal ionization conditions to obtain their molecular mass, and under conditions that promote ion dissociation via metastable decomposition or collision-induced dissociation (CID). The fragmentation spectra were used to obtain sequence information. Ion dissociation was promoted via three configurations of the ionization parameters. All methods yielded sequencing-grade b- and y-type ions. Two binary mixtures of peptides were used to demonstrate that: (1) external calibration provides a standard deviation (sigma) of 4 ppm with a mode of 9 ppm; and (2) that peptides with molecular masses that differ by a factor of two may be independently fragmented by appropriately choosing the CID energy and the low-mass cut-off. Analyses of tryptic digests employed liquid chromatography (LC), deposition of the eluant on a target, and finally MALDI-TOF mass spectrometry. The mass fingerprint and the (partial) sequence of the tryptic peptides were matched to their precursor protein via database searches.


Assuntos
Mapeamento de Peptídeos , Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida , Fibrinopeptídeo A/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA