Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 29(2): 100125, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37935317

RESUMO

Protein-protein interactions (PPIs) play a crucial role in most biological processes and are important targets in the development of therapeutic agents. However, small molecule drug discovery that targets PPIs remains very challenging. Targeting hot spot residues is considered the best option for inhibiting such interactions, but there are few examples of how knowledge of hot spots can be used in high throughput screening to find hit compounds. A substrate adaptor protein for a ubiquitin ligase complex, Kelch-like ECH-associated protein 1 (Keap1), negatively modulates the expression of genes involved in cellular protection against oxidative stress. Here, we focused on three arginine hot spot residues in the Keap1 substrate binding pocket (Arg380, Arg415, and Arg483), and screened the carboxylic acid library owned by Japan Tobacco Inc. for compounds that interact with the arginine residues in differential scanning fluorescence assays. Furthermore, we identified several small molecule compounds that specifically bind to the Keap1 Kelch domain hot spots by comparing binding to alanine mutant proteins (R380A, R415A, and R483A) with binding to the wild-type protein using surface plasmon resonance (SPR) screening. These compounds inhibited the protein-protein interaction between the Keap1 Kelch domain and the nuclear factor erythroid 2-related factor 2 (Nrf2) peptide, and the ubiquitination of Nrf2 catalyzed by the Cul3/RINGBox 1 E3 ligase. In addition, the binding mode of one compound (Compound 4) was determined by X-ray crystallography after validation of binding by isothermal titration calorimetry, native mass spectrometry, and nuclear magnetic resonance. Compound 4 had favorable thermodynamic properties, and noncovalently bound to Keap1 with a stoichiometry of 1:1. Our results suggest that Compound 4 could potentially be developed into effective therapeutic or preventive agents for a variety of diseases and conditions such as oxidative stress response, inflammation, and carcinogenesis. We believe that the use of a set of complementary biophysical techniques including the SPR assay with single alanine mutant of hot spots provides opportunities to identify hit compounds for developing inhibitors of PPIs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alanina , Arginina
2.
Biochemistry ; 62(14): 2161-2169, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37414577

RESUMO

Tyrosine phosphorylation is an essential post-translational modification that regulates various biological events and is implicated in many diseases including cancer and atherosclerosis. Vascular endothelial protein tyrosine phosphatase (VE-PTP), which plays an important role in vascular homeostasis and angiogenesis, is therefore an attractive drug target for these diseases. However, there are still no drugs targeting PTP including VE-PTP. In this paper, we report the discovery of a novel VE-PTP inhibitor, Cpd-2, by fragment-based screening combining various biophysical techniques. Cpd-2 is the first VE-PTP inhibitor with a weakly acidic structure and high selectivity, unlike known strongly acidic inhibitors. We believe that this compound represents a new possibility for the development of bioavailable VE-PTP inhibitors.


Assuntos
Inibidores Enzimáticos , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Fosforilação
3.
Bioorg Med Chem Lett ; 80: 129110, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563792

RESUMO

AMP deaminase 2 (AMPD2) has been thought to play an important role in energy homeostasis and immuno-oncology, while selective AMPD2 inhibitors are highly demanded to clarify the physiological function of AMPD2. In this report, we describe selective AMPD2 inhibitors inducing allosteric modulation. Based on hypothesis that compounds that exhibit increased inhibition by preincubation would cause conformational change of the enzyme, starting from HTS hit compound 4, we discovered compound 8 through the SAR study. From X-ray structural information of 8, this chemical series has a novel mechanism of action that changes the substrate pocket to prevent AMP from binding. Further elaboration of compound 8 led to the tool compound 21 which exhibited potent inhibitory activity of AMPD2 in ex vivo evaluation of mouse liver.


Assuntos
AMP Desaminase , Camundongos , Animais , AMP Desaminase/metabolismo
4.
Bioorg Med Chem ; 52: 116514, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808405

RESUMO

Pyruvate dehydrogenase kinases (PDHKs) are fascinating drug targets for numerous diseases, including diabetes and cancers. In this report, we describe the result of our structure-based drug design from tricyclic lead compounds that led to the discovery of highly potent PDHK2 and PDHK4 dual inhibitors in enzymatic assay. The C3-position of the tricyclic core was explored, and the PDHK2 X-ray structure with a representative compound revealed a novel ATP lid conformation in which the phenyl ring of Phe326 mediated the interaction of the Arg258 sidechain and the compound. Compounds with amide linkers were designed to release the ATP lid by forming an intramolecular pi-pi interaction, and these compounds showed single-digit nM IC50 values in an enzymatic assay. We also explored the C4-position of the tricyclic core to reproduce the interaction observed with the C3-position substitution, and the pyrrolidine compound showed the same level of IC50 values. By optimizing an interaction with the Asn255 sidechain through a docking simulation, compounds with 2-carboxy pyrrole moiety also showed single-digit nM IC50 values without having a cation-pi interaction with the Arg258 sidechain.


Assuntos
Trifosfato de Adenosina/farmacologia , Amidas/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/química , Amidas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piruvato Desidrogenase Quinase de Transferência de Acetil , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 44: 116283, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274549

RESUMO

A fragment-based lead discovery approach was applied to Pyruvate Dehydrogenase Kinases (PDHKs) to discover inhibitors against the ATP binding site with novel chemotypes. X-ray fragment screening toward PDHK4 provided a fragment hit 1 with a characteristic interaction in a deep pocket of the ATP binding site. While known inhibitors utilize several water molecules in a deep pocket to form water-mediated hydrogen bond interactions, the fragment hit binds deeper in the pocket with a hydrophobic group. Displacement of a remaining water molecule in the pocket led to the identification of lead compound 7 with a notable improvement in inhibition potency. This lead compound possessed high ligand efficiency (LE) and showed decent selectivity profile. Two additional lead compounds 10 and 13 with new scaffolds with tricyclic and bicyclic cores were generated by merging structural information of another fragment hit 2. The characteristic interaction of these novel inhibitors in a deep pocket provides new structural insights about PDHKs ATP binding site and opens a novel direction for the development of PDHKs inhibitors.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Descoberta de Drogas , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Relação Estrutura-Atividade
6.
Sci Rep ; 8(1): 17374, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478402

RESUMO

Retinoic acid-related orphan receptor gamma (RORγ) plays pivotal roles in autoimmune diseases by controlling the lineage of interleukin 17 (IL-17)-producing CD4+ T cells (Th17 cells). Structure-based drug design has proven fruitful in the development of inhibitors targeting the ligand binding domain (LBD) of RORγ. Here, we present the crystal structure of a novel RORγ inhibitor co-complex, in the presence of a corepressor (CoR) peptide. This ternary complex with compound T reveals the structural basis for an inhibitory mechanism different from the previously reported inverse agonist. Compared to the inverse agonist, compound T induces about 2 Šshift of helix 5 (H5) backbone and side-chain conformational changes of Met365 on H5. These conformational changes correlate to reduced CoR peptide binding to RORγ-LBD in the presence of compound T, which suggests that the shift of H5 is responsible. This crystal structure analysis will provide useful information for the development of novel and efficacious drugs for autoimmune disorders.


Assuntos
Proteínas Correpressoras/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Domínios Proteicos/fisiologia , Doenças Autoimunes/metabolismo , Humanos , Interleucina-17/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA